

Arguing Satisfaction of Security Requirements

Authors:
Charles B. Haley
Robin Laney
Jonathan D. Moffett
Bashar Nuseibeh

The postal address for all authors is:

Department of Computing
The Faculty of Mathematics and Computing
The Open University
Walton Hall
Milton Keynes
Buckinghamshire
MK7 6AA
UK

Keywords: security requirements engineering, design rationale, argumentation, system context

Arguing Satisfaction of Security Requirements

Abstract

The chapter presents a process for security requirements elicitation and analysis, based around the

construction of a satisfaction argument for the security of a system. The process starts with the

enumeration of security goals based on assets in the system, then uses these goals to derive security

requirements in the form of constraints. Next, a satisfaction argument for the system is constructed, using

a problem-centered representation, a formal proof to analyze properties that can be demonstrated, and

structured informal argumentation of the assumptions exposed during construction of the argument.

Constructing the satisfaction argument can expose missing and inconsistent assumptions about system

context and behavior that effect security, and a completed argument provides assurances that a system

can respect its security requirements.

INTRODUCTION

This chapter describes an approach to carry out security requirements engineering; the process

of eliciting, specifying, and analyzing the security requirements for a system. The approach is

founded on the following fundamental ideas:

• The "what" of security requirements – its core artifacts – must be understood before the

"how" of their construction and analysis.

• Security cannot be considered as a feature of software alone; it is concerned with the

prevention of harm in the real world. We must therefore consider both the security

requirements of real-world systems and the specification of software that demonstrably meets

those requirements.

• Since security is largely concerned with prevention of misuse of system functions, security

requirements can most usefully be defined by considering them as constraints upon

functional requirements.

• Since security is by definition an ‘open world’ problem (the domain of analysis will always

be too small), any argument that a system will satisfy its security requirements must take

non-provable assertions about the real world into account.

The contribution of this chapter is the combination of four components described in previous

work into a coherent security requirements process. The first component is a framework that

provides a systematic statement of the roles and relationships of security goals, security

requirements, and security functions, and their relationships with other system and software

requirements. The second is a way of describing threats and their interactions with the system.

The third is a precise definition of security requirements. The fourth is a two-layer set of

arguments to assist with validating the security requirements within the context of the system, to

determine that the system is able to meet the security requirements placed upon it. The first and

third were described in (Moffett, Haley, & Nuseibeh, 2004), the second in (Haley, Laney, &

Nuseibeh, 2004), and the fourth in (Haley, Moffett, Laney, & Nuseibeh, 2005).

Although all the steps in the process are described in this chapter, the third component –

argumentation – is emphasized. This is not an exclusive focus, though, as understanding the role

of argumentation in security requirements requires that one understand the first three parts of the

process in order to place the pieces correctly in context.

THE SECURITY REQUIREMENTS PROCESS

The process uses the framework described in (Moffett et al., 2004), which enables an

understanding of the role of requirements analysis in the validation and verification of security

requirements and the other artifacts in the framework. The framework integrates the concepts of

the two disciplines of requirements engineering and security engineering. From requirements

engineering it takes the concept of functional goals, which are operationalized into functional

requirements, with appropriate constraints. From security engineering it takes the concept of

assets, together with threats of harm to those assets. In the framework:

• Security goals aim to protect assets from security threats.

• Security goals are operationalized into primary security requirements, which take the form of

(a subset of) the constraints on the functional requirements.

• Primary security requirements are realized by requirements on the behavior of relevant

domains, and in particular the domain of software.

• Feasible realizations of the primary security requirements lead to the need for secondary

security requirements, which are additional required functions or constraints.

The framework has been developed in order to understand the place of security requirements

within the development of an individual application, and our proposals are limited by that scope.

The application will, of course, be developed in the context of a software operating environment,

a hardware environment, and a human cultural environment. All of these environments will have

properties which impact upon the application.

The Need for Defined Security Requirements

Consider Anderson’s report (Anderson, 1996), which presents a view of the security goals of a

hospital clinical information system from the point of view of the doctors. It makes explicit

assumptions that the doctors should have control of the system, while the administrators should

be subordinate. In reality, in many health services, there is a power struggle between doctors and

administrators. In a hypothetical system in which that power struggle has not been resolved, we

can consider two possible sets of candidate security requirements. In set 1, proposed by the

doctors, some actions are considered legitimate for doctors, but prohibited for administrators. In

set 2, proposed by the administrators, the situation is reversed.

However, the system's requirements in this instance must be free of conflicts, because if not,

the implementers may resolve the conflicts in potentially inconsistent and incorrect ways. The

conflict between rival stakeholders must be resolved by the production of an agreed set of

security requirements. Only then can we analyze the requirements for misuses or abuses.

Definition of Security Requirements

We define the primary security requirements of a system as constraints on the functions of

the system: the security goals are operationalized as constraints on the system's functional

requirements:

• They are constraints on the system's functional requirements, rather than themselves being

functional requirements.

• They express the system's security goals in operational terms, precise enough to be given to a

designer.

Secondary security requirements are additional required functions or constraints that are

derived in the course of requirements analysis or system design, in order to enable feasible

realizations of the primary security requirements

It is worth noting that we do not claim to be correct in defining primary security requirements

as constraints on functional requirements, simply that it is useful to do so. We can be pragmatic

in this way because:

• Requirements specifications, in general, describe the functions (or operations or services) to

be provided by a system.

• It is clearly desirable for the specification to describe security requirements in a way that

enables them immediately to be related to the functions.

It is important to reiterate that security requirements (constraints) are expressed in terms of the

system context, which is larger than the software. A constraint on a function can be realized in

multiple ways, some completely outside the software to be constructed. We use a variant of

Jackson’s problem frames (Jackson, 2001) to represent the system context. The reader will find

further detail in the section Problem Frames later in this chapter.

Validation by Argumentation

One key validation step for the process described in this chapter is the ability to show that the

system can satisfy the security requirements. We propose the use of structured informal and

formal argumentation for this validation step: to convince a reader that a system can satisfy the

security requirements laid upon it. These arguments, called satisfaction arguments, are in two

parts. The first part consists of a formal argument to prove a system can satisfy its security

requirements, drawing upon claims about a system, and assuming the claims are accepted. The

second part consists of structured informal arguments to support the claims about system

behavior and characteristics that were made in the first argument. Building on our understanding

of security requirements, two-step satisfaction arguments assist with determining security-

relevant system properties, and how inconsistent and implausible assumptions about them affect

the security of a system.

The Resulting Artifacts

We assume that the system development process has recognizable stages, each of which

produces artifacts that are successively closer representations of a working system. These are

core artifacts. They are ordered in an abstraction hierarchy, progressing from the most abstract

to the final concrete working system. At early stages, core artifacts are typically documents or

prototypes. The final core artifact is the working system itself, consisting of a combination of

physical and software items.

There are two sets of core artifacts in which we have most interest. On the mainstream

requirements engineering side, we find goals, requirements, and the system (not software)

architecture. On the security engineering side we find assets, threats and control principles.

Support artifacts are artifacts that help to develop, analyze or justify the design of a core

artifact. They may represent formal analysis, informal argument, calculation, example or

counter-example, etc. They are the by-products of processes whose aim is to help produce

verified and valid core artifacts: either constructive processes which help create them, or

analytical processes which test them, both internally (verified) and in relation to their senior

artifacts in the hierarchy (valid).

Dependencies between Artifacts. In a hierarchy of artifacts, there are dependencies between

artifacts. For example, an operationalized requirement is dependent upon a higher-level goal

from which it has been derived, because alteration of the goal may cause alteration of the

requirement. We will call this kind of dependency hierarchical dependency.

There is also a reverse kind of dependency: feasibility. If it proves impossible to implement a

system that completely satisfies a requirements specification, then this will force a change in the

goals or requirements. The higher-level artifact is dependent on the feasibility of the artifacts

below it in the hierarchy.

The dependency relationships have an important implication for the structure of development

processes: if an artifact is dependent upon the implementation of another artifact for its

feasibility, then if the implementation is not feasible, there must be an iteration path in the

process, back to the ancestor from its descendant.

RELATED WORK

Our work is related to, and builds upon, research on security requirements, design rationale

and argument capture, safety requirements analysis.

Security Requirements

We review previous work on security requirements by examining security goals, security

policies, non-functional requirements, and other definitions. Before discussing these it may be

useful to point out what security requirements are not.

Security Requirements are not Security Functions. Security requirements are not to be

identified with security functions; e.g., encryption, access control, etc. Howard (Howard &

LeBlanc, 2001) states this in the following terms:

Security Features != Secure Features

The provision of security functionality in a system is only useful if it supports defined and well

understood security objectives.

Security Requirements as Security Goals. Many authors implicitly assume that security

requirements are identical to security goals. Tettero et al (1997) are explicit about this, defining

security requirements as the confidentiality, integrity, and availability of the entity for which

protection is needed. While this is a clear definition, it is too abstract for many purposes: no

doubt both doctors and the administrators in the example previously presented would agree on

the importance of confidentiality, integrity, and availability of the clinical information, but they

would disagree on the concrete security requirements that express those goals. If designers were

only given security goals to work with, it would be necessary for them to carry out further work

that belongs in the domain of the requirements engineer, by deciding how the security goals

should be operationalized in the requirements.

Security Requirements as Security Policies. Some authors identify security requirements with

security policies. Devanbu & Stubblebine (2000) define a security requirement as "a

manifestation of a high-level organizational policy into the detailed requirements of a specific

system. [… We] loosely (ab)use the term 'security policy' […] to refer to both 'policy' and

'requirement'". Anderson (2001) is less direct; he states that a security policy is "a document that

expresses […] what […] protection mechanisms are to achieve" and that "the process of

developing a security policy […] is the process of requirements engineering".

The difficulty with security policies is their chameleon-like meaning; the term can be used for

anything from a high-level aspiration to an implementation. Therefore, without accompanying

detailed explanation, it is not satisfactory to define security requirements as security policies.

Security Requirements as Non-functional Requirements. Devanbu & Stubblebine (2000), in

addition to their definition above, remark that security requirements are a kind of non-functional

requirement. We agree with that comment, but it needs further explanation. Kotonya and

Sommerville (1998), when discussing non-functional requirements, in which they include

security, define them as "restrictions or constraints" on system services; similar definitions can

be found in other text books. Rushby (2001) appears to take a similar view, stating "security

requirements mostly concern what must not happen". Using the Tropos methodology, Mouratidis

et al (2003) state that "security constraints define the system’s security requirements".

Our own view is consistent with these definitions: that security requirements are most usefully

defined as requirements for constraints on system functions.

Other Definitions of Security Requirements. Lee et al (2002) point out the importance of

considering security requirements in the development life cycle, but do not define them. ISO/IEC

15408 (ISO/IEC, 1999) does not define security requirements in its glossary. However, in one

place they are depicted as being at a higher level than functional requirements, but elsewhere the

reference to "security requirements, such as authorization credentials and the IT implementation

itself" appears to us as being at too low a level! Heitmeyer (2001) shows how the SCR method

can be used to specify and analyze security properties, without giving the criteria for

distinguishing them from other system properties.

A number of papers have focused on security requirements by describing how they may be

violated. For example, McDermott & Fox (1999), followed independently by Sindre & Opdahl

(2000) and elaborated by Alexander (2003), describe abuse and misuse cases, extending the use

case paradigm to undesired behavior. Liu et al (2003) describe a method of analyzing possible

illicit use of a system, but omit the important initial step of identifying the security requirements

of the system before attempting to identify their violations.

Van Lamsweerde (2004) describes a process by which security goals are made precise and

refined until reaching security requirements; he does not appear to regard them as different from

any other kind of requirement. Antón & Earp (2001) use the GBRAM method to operationalize

security goals for the generation of security policies and requirements, but do not define security

requirements.

Design Rationale and Argument Capture

Design rationale is principally concerned with capturing how one arrived at a decision,

alternate decisions, or the parameters that went into making the decision (J. Lee & Lai, 1991).

For example, Buckingham Shum (2003) focuses on how rationale (argument) is visualized,

especially in collaborative environments. Potts and Bruns (1988), and later Burge and Brown

(2004) discuss capturing how decisions were made, which decisions were rejected, and the

reasons behind these actions. Mylopoulos et al (1990) present a way to represent formally

knowledge that was captured in some way, without focusing on the outcome of any decisions.

Ramesh and Dhar (1992) describe a system for “capturing history in the upstream part of the life

cycle.” Fischer et al (1996) suggest that the explicit process of argumentation can itself feed into

and benefit design. Finkelstein and Fuks (1989) suggest that the development of specifications

by multiple stakeholders, who hold disparate views, may be achieved through an explicit

dialogue that captures speech acts, such as assertions, questions, denials, challenges, etc. The

representation of the dialogue is then a rationale for the specifications constructed. The common

element in all of the above work is the capture over time of the thoughts and reasons behind

decisions. Whether the decisions satisfy the needs is not the primary question.

Safety cases

Kelly (1999) argues that “a safety case should communicate a clear, comprehensive and

defensible argument that a system is acceptably safe to operate in a particular context.” He goes

on to show the importance of the distinction between argument and evidence. An argument calls

upon appropriate evidence to convince a reader that the argument holds. Attwood et al use the

same principles in (2004), taking the position that argument is a bridge between requirements

and specification, permitting capture of sufficient information to realize rich traceability. Our

work combines these two ideas.

The techniques proposed by Kelly are not directly applicable to security without modification,

primarily because the techniques are focused around objective evidence, component failure, and

accident, rather than subjective reasoning, subversion, and malicious intent.

ARGUMENTATION DRIVEN PROBLEM ANALYSIS

We use Zave and Jackson’s approach to problem analysis (Jackson, 2001; Zave & Jackson,

1997). They argue that one should construct a correctness argument for a system, where the

argument is based on known and desired properties of the domains involved in the problem. To

quote Jackson, “Your [correctness] argument must convince yourself and your customer that

your proposed machine will ensure that the requirement is satisfied in the problem domain.”

This section summarizes our approach to problem analysis using problem frames, and

describes the two types of arguments. We begin with a short presentation of problem frames.

Problem Frames

The view of requirements exemplified by problem frames (Jackson, 2001) is that a system is

intended to solve a problem in a context of real-world physical domains, where the context

includes system design decisions. One uses problem frames to analyze the problem in terms of

the context and the design decisions the context represents. The context contains domains, which

are physical elements around which the system (not just the software) will be built. The problem

frames approach differs from some other approaches (e.g. KAOS (van Lamsweerde, 2001)) that

hold that a requirements engineer should reason about a system’s characteristics without using a

physical model of the world; under this view, a requirements engineer enumerates goals for a

system under consideration and produces a temporal logic model of the system’s desired

behavior. We will show how using the real-world system perspective provided by problem

frames assists with the determination of security requirements.

In the problem frames universe, all computing problems involve the interaction between

domains in the world. Domains are tangible (e.g. people, equipment, networks) but may contain

intangibles (e.g. information). Every domain has interfaces to other domains, which are defined

by the phenomena visible between the domains on the interfaces. Descriptions of phenomena

controlled by given (existing) domains are indicative; they are “objectively true” (Jackson,

2001), meaning the phenomena and resulting behavior can be observed. Descriptions of

phenomena of designed domains (domains to be built as part of the solution) are optative; one

hopes to observe the phenomena in the future.

Machine
(the domain that

causes the
requirements to

be satisfied)

B

Person
(Biddable domain: one
that can be asked to

perform actions, not is
not required to.)C

Motion
Sensor

C

Alarm Siren
(Causal domain, e.g. a

device)

Sound alarm for
 30 seconds when

person enters room

a

b

c

a: AS!alarm sounds
b: P!enters_in_range_of_sensor
c: PE!presentInfraredSignature

d: MS!objectDetected
e: MA!turnOnAlarm
 MA!turnOffAlarm

d

e

Phenomena
Label

Figure 1 – Example Problem Diagram

Problems are described using a straightforward graphical notation. Domains are boxes,

interfaces are arrows, and phenomena are described by indicated by a label on an interface.

Figure 1 shows a problem diagram for a simple alarm system. It has one requirement: sound an

alarm for 30 seconds when a person enters the room under protection.

One special domain is the machine, the domain that performs the transformations to satisfy the

requirement. The machine is indicated by 2 vertical lines in the domain box. The interplay of

phenomena between the machine and its connected domains defines what the machine has to

work with to satisfy the requirement. The interplay of phenomena is a specification, describing

how the requirements are satisfied (Zave & Jackson, 1997). The difference between specification

and requirement is important. A specification is an expression of the behavior of phenomena

visible at the boundary of the domains, whereas a requirement is a description of the problem to

be solved. For example, in the context of a building we might find the requirements ‘permit

passage from one room to another’ and ‘physically separate rooms when possible’. Clearly the

problem involves something like doors. Equally as clearly, it does not specify that doors be used,

nor does it specify internal phenomena or behavior. It is up to the designer (the architect in this

case) to choose the ‘door’ domain(s) for the system. One might satisfy the requirement with a

blanket, an automatic door, a futuristic iris, or a garden maze. Each domain implementation

presents different phenomena at its boundaries (i.e. they work differently), and the resulting

system specification must consider these differences. However, the requirement does not change.

There are two fundamental diagram types in a problem frames analysis, context diagrams and

problem diagrams. A context diagram shows the domains of interest in a system, how the

domains are interconnected, and optionally the phenomena on the interfaces between domains. A

problem diagram is used to describe a problem in the system; the problem is expressed by a

requirement. The problem diagram, of which Figure 1 is an example, is a projection of the

context, showing only the domains or groups of domains of interest to the particular problem.

The diagram shows the domains involved and the phenomena exchanged between the

domains. It shows the requirement (the function), the constrained domain(s), the inputs, and the

phenomena shared between the domains: the domains that are involved in the system within

which the machine operates to realize the necessary function. The behavior of the system is

specified by the sequencing and interplay of phenomena between the domains. Behavior is used

to construct the correctness argument by making claims about the behavior. To ground the idea

of ‘claim’ in Jackson’s problem analysis, system requirements are optative statements, or

statements about what we wish to be true, about the behavior of a system, and therefore are

claims about future system behavior that should be argued (and in fact, this is what correctness

arguments do). For example, the optative statement “the system shall do X” states a claim that

under the conditions described in the problem, the system will do X. The correctness argument

establishes the validity of this claim.

A similar situation exists with regard to security requirements and correctness arguments. Two

significant distinctions must be made, however. The first is that it is very difficult to talk about

correctness when discussing security. One can convince the reader that the proposed system

meets the needs, but it is far more difficult to prove that the system is correct. The distinction

between convince and prove (or show) is important. It is not possible to prove the negative – that

violation of security goals do not exist – but one can be convincing that sufficient outcomes have

been addressed. We propose using argumentation to this end: to convince a reader that the

security requirements can be satisfied.

 Trust Assumptions & Arguments

Our earlier work extended the problem frames approach with trust assumptions (Haley,

Laney, Moffett, & Nuseibeh, 2004), which are claims about the behavior or the membership of

domains included in the system, where the claims are made in order to satisfy a security

requirement. These claims represent an analyst’s trust that domains behave as described. Trust

assumptions are in the end the analyst’s opinion, and therefore assumed to be true. Said another

way, trust assumptions are unsubstantiated claims used in security satisfaction arguments.

Any form of security argument must satisfy two goals: 1) that given a collection of domain

properties and trust assumptions, one can show that a system can be secure, and 2) to create a

uniform structure for the satisfaction argument so that the trust assumptions are made explicit.

We satisfy these goals by splitting the satisfaction argument into two parts: a formal outer

argument that is first constructed, and informal structured inner arguments that are constructed

to support the outer argument. The inner argument makes extensive use of trust assumptions.

 The Outer Argument

The formal outer argument uses claims about the behavior of the system (interplay of

phenomena) to demonstrate that the security requirement (the constraint) is satisfied. It is

expressed using an appropriate logic, where the premises are formed from domain behavior

properties and the conclusion is the satisfaction of the security requirement. For simplicity, we

use propositional logic in this chapter, resulting in the outer argument being a proof of the form:

(domain property premises) ├─ security requirement

 The Inner Arguments

The inner argument is a set of informal arguments to recursively support the claims used in the

outer argument. We propose a form inspired by the work of Toulmin (1958), one of the earliest

advocates and developers of a formal structure for human reasoning. Toulmin style arguments

appear to be well suited for our purpose, since they facilitate the capture of relationships between

domain properties (grounds in the formal argument), the trust assumptions that eventually

support these grounds, and reasons why the argument may not be valid.

Toulmin et al (1979) describe arguments as consisting of:

1. Claims, specifying the end point of the argument – what one wishes to convince the world of.

2. Grounds, providing any underlying support for the argument, such as evidence, facts,

common knowledge, etc.

3. Warrants, connecting and establishing relevancy between the grounds and the claims. A

warrant explains how the grounds are related to the claim, not the validity of the grounds

themselves.

4. Backing, establishing that the warrants are themselves trustworthy. These are, in effect,

grounds for believing the warrants.

5. Modal qualifiers, establishing within the context of the argument the reliability or strength of

the connections between warrants, grounds, and claims.

6. Rebuttals, describing what might invalidate any of the grounds, warrants, or backing, thus

invalidating the support for the claim.

Toulmin et al (1979) summarize the above six items as follows: “The claims involved in real-

life arguments are, accordingly, well founded only if sufficient grounds of an appropriate and

relevant kind can be offered in their support. These grounds must be connected to the claims by

reliable, applicable, warrants, which are capable in turn of being justified by appeal to sufficient

backing of the relevant kind. And the entire structure of argument put together out of these

elements must be capable of being recognized as having this or that kind and degree of certainty

or probability as being dependent for its reliability on the absence of certain particular

extraordinary, exceptional, or otherwise rebutting circumstances.” They propose a diagram for

arguments that indicates how the parts fit together. See Figure 2.

Newman and Marshall (1991) show that the ‘pure’ Toulmin form suffers because the

fundamental recursive nature of the argument is obscured. Grounds may need to be argued,

making them claims. Warrants may need to be argued, which is the reason for the existence of

the backing, but it is not clear how the backing differs from grounds in a normal argument. We

agree, and extend Toulmin arguments to make the recursive properties of arguments and the

relationships between grounds, warrants, and claims explicit, while keeping the basic

connections between the components that Toulmin proposed.

Grounds Claim

Rebuttal

Modal
Qualifier

Warrants

Backing

Figure 2 – Generic Toulmin-form argument

We propose a simple language to represent the structure of these extended Toulmin

arguments. The language, with a syntax formally defined by an LR(1) grammar, captures the

essence of Toulmin arguments while facilitating recursion and sub-arguments. We chose a

textual language because a) textual utterances are easier to manipulate than tree diagrams, b)

trees are easily generated from the parser’s abstract syntax tree, and c) a ‘compiler’ can assist in

dynamic browsing of arguments. Further discussion of the use of the language can be found in

the case study.

FROM SECURITY GOALS TO SECURITY REQUIREMENTS

This section presents the 3 major steps of our process: identification of security goals,

identification of security requirements, and construction of satisfaction arguments.

Process Overview

Our process for moving from security goals to security arguments is shown as Figure 3. There

are two columns in the figure, corresponding to the "normal" application development process

and quality goals, and the development of security requirements. It is assumed that no explicit

activity is needed to elicit the organization’s control principles, and these can therefore be fed

directly into the Identification of Security Goals activity.

[Not feasible]

Scope the Application

Elicit/Revise Application
Business Goals & Quality Goals

Elicit/Revise Functional
Requirements

Identify/Revise & Verify
Security Goals

Elicit/Revise Assets

Elicit/Revise possible
Harm

Application scope

Goals

Assets

Possible Harm

Validate Security Goals
against Assets, Threats

and Business Goals

Security goals

[Feasible]

[Not OK]

[OK]

Construct/Revise &
Verify Security
Requirements

Validate Security
Requirements against

Security Goals

Security requirements
[Feasible]

Construct/Revise &
Verify System
Architecture

Validate Security of
System Architecture

against Security
Requirements

System Architecture
[Feasible]

[OK]

[Not feasible]

Functional
requirements

Security Validation

General System Activity

Security Activity
(Construct/Verify)

Goals

[OK]

[Not feasible]

Figure 3 – Security Requirements Process Overview (Activity Diagram)

Lines coming out of the bottom of an activity box indicate the successful completion of an

activity and carry with them a core artifact into the next activity. Lines coming out of the side of

an activity box denote failure and imply the need to iterate back up the process in order to revise

an earlier activity. Failure can be one of two kinds: it has been found to be infeasible to create a

consistent set of the artifacts that are constructed by that activity; or validation of the artifacts

against a higher level – such as validation of security requirements against security goals –

shows that they fail to meet their aims. This occurs if it has not been possible to construct a

satisfactory satisfaction argument, or if a vulnerability has been found. The iteration may cascade

upwards if the architecture is not feasible without a revision of the business or security goals.

Step: Identify Security Goals

The security goals of the system owner are derived from a combination of three different

sources: the possible harm to assets; management control principles; and application business

goals, which will determine the applicability of management control principles, for example by

defining those privileges that are needed for the application prior to excluding those that are not.

Note that other legitimate stakeholders may have other security goals that conflict with these.

The set of relevant security goals may be mutually inconsistent, and inconsistencies will need to

be resolved during the goal analysis process, before a set of consistent requirements can be

reached. On the other hand, the goals of attackers are not considered to be a part, even negated,

of the security goals of the system. The goals of the system owner and other legitimate

stakeholders are not directly related to the goals of attackers, because security is not a zero sum

game like football. In football, the goals won by an attacker are exactly the goals lost by the

defender. Security is different; there is no exact equivalence between the losses incurred by the

asset owner and the gains of the attacker. To see this, look at two examples:

• Robert Morris unleashed the Internet Worm (Spafford, 1989), causing millions of dollars of

damage, apparently as an experiment without serious malicious intent. The positive value to

the attacker was much less than the loss incurred by the attacked sites.

• Many virus writers today are prepared to expend huge effort in writing a still more ingenious

virus, which may cause little damage (screen message "You've got a Virus"). Generally, there

is no simple relationship between the gains of a virus writer and the losses incurred by those

who are attacked.

The consequences of security not being a zero sum game are twofold: the evaluation of

possible harm to an asset can generally be carried out without reference to particular attackers;

and consideration of the goals of attackers cannot be used simply to arrive at the goals of a

defender to prevent harm, i.e. their security goals.

Step: Identify Security Requirements

Recall that we define security requirements to be the constraints on functional requirements

that are needed to achieve security goals. In the process, one determines which assets will be

implicated in satisfying a particular functional requirement by drawing the context for that

functional requirement as a problem diagram. The list of assets and the type of function will

produce a list of threats that must be mitigated. The security requirements are these mitigations,

constraining the function in ways that will achieve the security goals.

A simple example of such a constraint is:

The system shall provide Personnel Information only to members of Human Resources
Dept.

The constraint ("only to …") is secondary to the function ("provide Personnel Information");

it only makes sense in the context of the function. One might also impose temporal constraints:

The system shall provide Personnel Information only during normal office hours;

and complex constraints on traces:

The system shall provide information about an organization only to any person who
has not previously accessed information about a competitor organization (the
Chinese Wall Security Policy, (Brewer & Nash, 1989)).

Availability requirements will need to express constraints on response time:

The system shall provide Personnel Information within 1 hour for 99% of requests.

We note that this differs only in magnitude from a Response Time quality goal, which might use

the same format to require a sub-second response time.

Step: Construction of Satisfaction Arguments

The next step is to validate the security requirements against the system architecture by

constructing the two-part security satisfaction arguments from a problem diagram and a set of

security requirements. This step is described in the case study, below.

CASE STUDY

This case study, of a Personnel Information display system, is used to validate the framework

that we have set out above and to bring out further issues for discussion. We first set out a simple

system, with business goals, from which functional requirements are derived, and then show how

the system security requirements are derived from the application of the organization’s security

goals to the functional requirements. Next, the satisfaction arguments are constructed. Given the

system security requirements, there are design decisions to be made about where to locate the

security functionality and the approach to be used, and one example of this is provided.

From System Business Goals to Security Requirements

A simple human resources application will be used in this section to illustrate the use of our

process. We assume that the business goals have been elicited and that there is only one goal:

FG1: Provision of people's personnel information to them.

We further assume that initial requirements have been elicited and that there is only one

functional requirement:

FREQ1: On request from a Person (member of People), the system shall display
personnel information (PersonInf) for a specified payroll number (Payroll#) to
that Person.

Further analysis shows that, ignoring physical assets such as the computers and the buildings,

there is only one asset implicated in the system: PersonInf, an information asset.

The harms that involve PersonInf are exposure (loss of confidentiality), alteration (loss of

integrity), and denial of service (loss of availability). The first harm gives rise to the security goal

SG1: prevent unauthorized exposure of PersonInf. Likewise, the second harm gives rise to

the goal SG2: prevent unauthorized alteration of PersonInf, and the third harm gives rise to

SG3: prevent denial of access to PersonInf by authorized persons.

The next step is to derive security requirements from the combination of functional goals and

security goals. Remember that security requirements constrain the function called for by a

functional goal. Applying SG1 to FREQ1, we derive the security requirement (constraint) SR1:

Personnel information must be provided only to HR staff. We cannot apply SG2 to any

functional requirement, because no requirement permits modification of PersonInf. Applying

SG3 to FREQ1, we derive the (somewhat arbitrary) security requirement SR2: Personnel

information must be provided to HR staff within 60 minutes of its request.

Provide HR data
requested by user
- Only to HR staff

B

Users

Personal
Information
Machine +
HR Data

a

a: U!persNumber
 HR!persData

Figure 4 – Problem diagram for the HR data retrieval application

Although we have derived two security requirements, for reasons of space we will only look at

one of them: SR1. Figure 4 shows the initial problem diagram for this application. There are two

phenomena of interest. The first, U!persNumber, is the user’s request for personnel information.

The second, HR!persData, is the information returned by the request.

We begin by constructing an outer argument that proves the claim: HR data is provided only

to HR staff.

Constructing Satisfaction Arguments

We wish to construct a convincing satisfaction argument that a system can satisfy its security

requirements. The reader may note the use of the word “can”, instead of the word “will”. We use

the phrase “can satisfy” because we do not know if the eventual implementation will respect the

specifications. Nor do we know if the system will introduce unintended vulnerabilities, which

manifest themselves as phenomena not described in the behavioral specification.

The Outer Argument

We first attempt to construct the outer argument for the HR problem shown in Figure 4. Recall

that this argument will take the form

(domain property premises) ├─ security requirement

There are two domains in the problem: the biddable domain ‘users’ and the machine (which

contains the data). To construct the argument, we must first express the behavior of the system

more formally, which we do using a notation based on the causal logic described in (Moffett,

Hall, Coombes, & McDermid, 1996). In this logic, the behavior of the domains in Figure 4,

expressed in terms of the phenomena, is:

1. U!persNum shall cause M!persData

A major problem is immediately exposed. Given what we see in the behavior description,

there is no way to connect the system’s behavior to the security requirement, as membership of

the Users domain is not made apparent. No formal argument can be constructed. We must ask

the system designers for help. There are (at least) three design choices:

1. Introduce some physical restriction, such as a guard, to ensure that the membership of the

domain ‘users’ is restricted to HR staff. Doing so would permit construction of the following

inner argument (proof):

M is defined as (User ∈ HR)
D is defined as (phenomenon HR!persData)
D → M (if info is displayed, then user ∈ HR)
D (info is displayed)
M (therefore user ∈ HR)

2. Introduce phenomena into the system permitting authentication and authorization of a ‘user’.

3. Introduce a trust assumption (TA) asserting that the membership of ‘users’ is limited to HR

staff, even though no information is available to support the assertion.

Provide HR data
requested by user
- Only to HR staff

B

Users

Personal
Information
Machine +
HR Data

a

b
a: U!persNumber(#, userID, credentials)
 PIM!{ persData | NO }

b: PIM!validate(userID, credentials)
 CS!{YES | NO}

Credentials Storage

C

Figure 5 – New HR staff problem diagram

To make the example more interesting, we choose option 2. The resulting problem diagram is

shown in Figure 5. The diagram shows that the user is to supply some sort of credentials along

with the request for information. These credentials are passed to an external authentication and

authorization engine, which answers yes or no. If the answer is yes, then the machine provides

the data; otherwise, the data is refused. The corresponding behavior specification is:

1. U!(UserId, credentials, Payroll#) shall cause PIM!Validate(UserId, HR,
credentials)

2. if isValid(UserId, credentials)
 PIM!Validate(HR, UserId, credentials) shall cause CS!YES
else
 PIM!Validate(HR, UserId, credentials) shall cause CS!NO

3. CS!YES shall cause PIM!PersonInf(Payroll#)
4. CS!NO shall cause PIM!NO

We must now construct the satisfaction argument for the new ‘Users’ domain. We begin with

the outer argument, first defining the symbols to be used. These are shown in the following table.

Symbol Derived from (see Figure 5)
I : Input request U!(UserId, credentials, Payroll#)
V: Validate Creds PIM!Validate(HR, UserId, credentials)
Y: ReplyYes CS!YES
D: DisplayInfo PIM!PersonInf(Payroll#)
C: CredsAreValid isValid(UserId, credentials)
M: MemberOfHR Conclusion: user is member of HR

The following predicate logic premises are derived from the behavioral specification. These

premises are the grounds used in the formal argument and, if necessary, will be supported by

informal arguments.

Name Premise Description
P1 I → V Input of request shall cause validation
P2 C → M If credentials are valid then user is a member of HR
P3 Y → V&C A Yes happens only if credentials are valid and validated
P4 D → Y Display happens only if the answer was Yes

As the requirement is that we display information only to a member of HR, we include D as a

premise and M as the conclusion. Thus we want to show:

(P1, P2, P3, P4, D ├─ M).

A proof is shown in Figure 6.

1 I → V (Premise)
2 C → M (Premise)
3 Y → V & C (Premise)
4 D → Y (Premise)
5 D (Premise)
6 Y (Detach (→ elimination), 4, 5)
7 V & C (Detach, 3, 6)
8 V (Split (& elimination), 7)
9 C (Split, 7)
10 M (Detach, 2, 9)
11 D → M (Conclusion, 5)

Figure 6 – Proof: the security argument is satisfied
The Inner Arguments

Each of the rules used in the outer argument should be examined critically. We begin with the

premises P1, P3, & P4. These are probably not controversial, because one can say that they are

part of the specification of the system to be implemented. The arguments thus consist of one trust

assumption, as shown in the following utterance in our argument language:

let G1 = "system will be correctly implemented";
given grounds G1 thus claim P1.
given grounds G1 thus claim P3.
given grounds G1 thus claim P4.

Premise P2 is more complex. This premise is making a claim about the membership of the

domain ‘Users’ by saying that if a user has valid credentials, then that user must be a member of

HR. An argument for this claim is shown below. This argument incorporates 3 trust assumptions:

G2, G3, and G4.

given grounds
 G2: "Valid credentials are given only to HR members"
warranted by
(
 given grounds
 G3: "Credentials are given in person"
 warranted by
 G4: "Credential administrators are honest & reliable"
 thus claim
 C1: "Credential administration is correct"
)
thus claim
 P2: "HR credentials provided --> HR member"
rebutted by
 R1: "HR member is dishonest",
 R2: "social engineering attack succeeds",
 R3: "person keeps credentials when changing depts" .

The three rebuttals in the argument require some treatment. Recall that rebuttals express

conditions under which the argument does not hold. If the rebuttals remain in the argument, they

create implicit trust assumptions saying that the conditions expressed in the rebuttals will not

occur, which may be acceptable. Alternatively, one could construct an argument against a

rebuttal. If we assume that the stakeholder is unwilling to accept R1, then the system must

somehow be changed to mitigate the rebuttal.

Removing Rebuttals by Adding Function

At times the most straightforward way to remove a rebuttal might be to add functionality to a

system. The additional functionality would permit adding new grounds or warrants to mitigate

the conditions that permit the rebuttal.

As an example, consider R1: a dishonest HR member sells credentials. One could mitigate this

risk by increasing the probability that an unusual use of the employee’s credentials would be

detected, thus raising the probability that the misuse would be detected. Doing so is probably

most easily accomplished by adding new functionality to the system. In our example, we add two

functional requirements to the system:

• FREQ2: all uses of HR credentials are logged

• FREQ3: any use of HR credentials from a location outside the HR department is

immediately signaled by email to the HR director.

These functional requirements would then be used as grounds in an argument against the

rebuttal R1:

given grounds
 G5: "uses of HR creds are logged (FREQ2)"
 and
 G6: "uses of HR creds from outside are emailed (FREQ3)"
warranted by
 G7: "these actions increase the probability of detecting improper use of
creds"
 and
 G8: "the employee does not want to get caught"
thus claim
 C2: "HR members will not sell their credentials".

C2 is added as a mitigating proposition to the rebuttal in argument 1 (R1: "HR member is

dishonest" mitigated by C2).

DISCUSSION AND FUTURE TRENDS

Constructing Inner Arguments

One question that arises is “how does the analyst find rebuttals, grounds, and warrants?”

Unfortunately, we cannot propose a recipe. We suggest a method inspired by the how/why

questions used in goal-oriented requirements engineering methods (e.g. KAOS (van

Lamsweerde, 2001)). Given a claim, the analyst asks ‘why is this claim true?’ and ‘what happens

if it is not true?’ The analyst first to choose which claim is being argued, and then use the ‘why’

question to gather the grounds that are pertinent to the claim along with the warrants that connect

the grounds to the claim. The argument is then constructed.

The analyst next asks the question “what can prevent this claim from being true?” The

answers are the initial rebuttals. Some of these rebuttals will be challenges of the grounds or

warrants; these create the need for sub-arguments where the challenged item is a claim. In other

cases, the rebuttal will not be addressed, thereby creating an implicit trust assumption stating that

the event(s) described in the rebuttal are not to be considered. A third possibility is to add new

grounds to the argument that remove the conditions assumed by the rebuttal.

Problem vs. Solution Space

A reasonable objection to argumentation as described in this chapter is that we are designing

the system in order to determine its requirements. To some extent, this is true; the domains

included in the system are being more finely described iteratively.

However, we argue that the part of the system being constructed is the machine, and we are

not designing that. By applying an iterative process that interleaves requirements and design

(Nuseibeh, 2001), we are specifying the environment (or context) that the machine lives within.

These specifications include additional domains that need to exist (perhaps inside the machine),

and additional phenomena required to make use of these domains.

Security Functional Requirements

Adding functionality to support security requirements creates a traceability problem. This

chapter provided two situations where this sort of functionality was added: addition of credential

verification to permit the outer argument to be constructed, and addition of monitoring and

logging functionality to support removal of the dishonest employee rebuttal. Somehow these

functions must remain connected with the security requirement they support, because the need

for these functions could change or disappear if the security requirement changes.

Integration with Other RE Frameworks

One area for future work is to adapt the process described in this chapter to other requirements

engineering frameworks such as KAOS (van Lamsweerde, 2001), i* (Chung, Nixon, Yu, &

Mylopoulos, 2000; Yu, 1997), and SCR (Heitmeyer, Kirby, Lebaw, & Bharadwaj, 1998). All of

these frameworks are amenable to using the steps of our process, especially asset and harm

analysis, and construction of satisfaction arguments. However, as each of the above frameworks

specifies behavior in a very different way, the construction of the outer argument will be

different, and these differences must be investigated.

The Role of Automation

The structure of the inner argument language permits some forms of automated analysis.

Some options under consideration include generating lists of claims supporting a particular

premise and testing of the argument through negation of particular trust assumptions. We are

also considering using tools like Auraucaria (Reed, 2005) for diagramming the arguments,

generating the appropriate input for the program. We have already started using Compendium

(Compendium Institute, 2005) to capture problem frame diagrams. We have used BlobLogic

(Howitt, 2005) and DC Proof (Christensen, 2005) to help construct and check outer arguments,

and we are investigating other proof construction aids.

CONCLUSIONS

At the beginning of this chapter, we stated four motivating concerns, repeated here:

• The "what" of security requirements – its core artifacts – must be understood before the

"how" of their construction and analysis.

• Security cannot be considered as a feature of software alone; it is concerned with the

prevention of harm in the real world. We must therefore consider the security requirements

of real-world systems in addition to the software.

• Since security is largely concerned with prevention of misuse of system functions, security

requirements can most usefully be defined by considering them as constraints upon

functional requirements.

• Since security is by definition an ‘open world’ problem (the domain of analysis will always

be too small), any argument that a system will satisfy its security requirements must take

non-provable assertions about the real world into account.

In this chapter we have addressed these concerns by presenting a precise definition of security

requirements, a framework for determining these requirements, and a structure for arguing that

the requirements will be satisfied. Other advantages of our approach are:

• Security requirements are naturally integrated with the system's functional requirements and

with constraints derived from other sources. An integrated development is possible.

• This has the consequence that interactions and trade-offs between security and other quality

requirements can be analyzed. For example, interactions and trade-offs between them can be

considered in terms of the different required constraints on the same functional requirements.

• The two-level satisfaction arguments facilitate showing that a system can meet its security

requirements. The structure behind the arguments assists in finding system-level

vulnerabilities. By first requiring the construction of the formal argument based on domain

properties, one discovers which domain properties are critical for security. Constructing the

informal argument showing that these domain properties can be trusted helps point the

analyst toward vulnerabilities; the rebuttal is an important part of this process. Vulnerabilities

found in this way are removed either through modification of the problem, addition of

security functional requirements, or through addition of trust assumptions that explain why

the vulnerability can be discounted.

We claim that this framework will help requirements and security engineers to understand the

place of the various synthetic and analytical activities that have previously been carried out in

isolation. The framework has raised a number of open issues, mentioned in the discussion, but

we believe that it provides a way forward to effective co-operation between the two disciplines

of requirements and security.

Acknowledgements:

The authors wish to thank Michael Jackson for his continuous involvement and support.

Thanks also to Simon Buckingham Shum for many helpful conversations about argumentation.

The financial support of the Leverhulme Trust and the Royal Academy of Engineering is

gratefully acknowledged, as is EU support of the E-LeGI project, number IST-002205.

References:

Alexander, I. (2003). Misuse Cases in Systems Engineering. Computing and Control Engineering Journal, 14(1),
40-45.

Anderson, R. (1996). A Security Policy Model for Clinical Information Systems. In Proceedings of the 1996 IEEE
Symposium on Security and Privacy (pp. 30-43). Oakland CA USA.

Anderson, R. (2001). Security Engineering: A Guide to Building Dependable Distributed Systems.

Antón, A. I., & Earp, J. B. (2001). Strategies for Developing Policies and Requirements for Secure E-Commerce
Systems. In A. K. Ghosh (Ed.), E-Commerce Security and Privacy (Vol. 2, pp. 29-46): Kluwer Academic
Publishers.

Attwood, K., Kelly, T., & McDermid, J. (2004). The Use of Satisfaction Arguments for Traceability in
Requirements Reuse for System Families: Position Paper. In Proceedings of the International Workshop on
Requirements Reuse in System Family Engineering, Eighth International Conference on Software Reuse (pp. 18-21).
Carlos III University of Madrid, Madrid Spain.

Brewer, D. F. C., & Nash, M. J. (1989). The Chinese Wall security policy. In Proceedings of the 1989 IEEE
Symposium on Security and Privacy (pp. 206 - 214). Oakland CA USA: IEEE Computer Society Press.

Buckingham Shum, S. J. (2003). The Roots of Computer Supported Argument Visualization. In P. A. Kirschner, S.
J. Buckingham Shum & C. S. Carr (Eds.), Visualizing Argumentation: Software Tools for Collaborative and
Educational Sense-Making (pp. 3-24). London UK: Springer-Verlag.

Burge, J. E., & Brown, D. C. (2004). An Integrated Approach for Software Design Checking Using Design
Rationale. In J. S. Gero (Ed.), Proceedings of the First International Conference on Design Computing and
Cognition (pp. 557-576). Cambridge MA USA: Kluwer Academic Press.

Christensen, D. (2005). DC Proof. Retrieved 9 Nov, 2005, from http://www.dcproof.com/

Chung, L., Nixon, B., Yu, E., & Mylopoulos, J. (2000). Non-Functional Requirements in Software Engineering:
Kluwer Academic Publishers.

Compendium Institute. (2005). Compendium, 2005, from http://www.compendiuminstitute.org/

Devanbu, P., & Stubblebine, S. (2000). Software Engineering for Security: A Roadmap. In A. Finkelstein (Ed.), The
Future of Software Engineering: ACM Press.

Finkelstein, A., & Fuks, H. (1989). Multiparty Specification. In Proceedings of the 5th International Workshop on
Software Specification and Design (pp. 185-195). Pittsburgh PA USA.

Fischer, G., Lemke, A. C., McCall, R., & Morch, A. (1996). Making Argumentation Serve Design. In T. Moran & J.
Carroll (Eds.), Design Rationale Concepts, Techniques, and Use (pp. 267-293): Lawrence Erlbaum and Associates.

Haley, C. B., Laney, R. C., Moffett, J. D., & Nuseibeh, B. (2004). The Effect of Trust Assumptions on the
Elaboration of Security Requirements. In Proceedings of the 12th International Requirements Engineering
Conference (RE'04) (pp. 102-111). Kyoto Japan: IEEE Computer Society Press.

Haley, C. B., Laney, R. C., & Nuseibeh, B. (2004). Deriving Security Requirements from Crosscutting Threat
Descriptions. In Proceedings of the Third International Conference on Aspect-Oriented Software Development
(AOSD'04) (pp. 112-121). Lancaster UK: ACM Press.

Haley, C. B., Moffett, J. D., Laney, R., & Nuseibeh, B. (2005). Arguing Security: Validating Security Requirements

Using Structured Argumentation. In Proceedings of the Third Symposium on Requirements Engineering for
Information Security (SREIS'05) held in conjunction with the 13th International Requirements Engineering
Conference (RE'05). Paris, France.

Heitmeyer, C. L. (2001). Applying 'Practical' Formal Methods to the Specification and Analysis of Security
Properties. In Proceedings of the International Workshop on Information Assurance in Computer Networks:
Methods, Models, and Architectures for Network Computer Security (MMM ACNS 2001) (Vol. 2052, pp. 84-89). St.
Petersburg, Russia: Springer-Verlag Heidelberg.

Heitmeyer, C. L., Kirby, J., Lebaw, B. G., & Bharadwaj, R. (1998). SCR*: A Toolset for Specifying and Analyzing
Software Requirements. In A. J. Hu & M. Y. Vardi (Eds.), Proceedings of the 10th International Conference on
Computer Aided Verification (Vol. 1427, pp. 526-531). Vancouver BC Canada: Springer.

Howard, M., & LeBlanc, D. (2001). Writing Secure Code: Microsoft Press.

Howitt, C. (2005). BlobLogic. Retrieved 9 Nov, 2005, from http://users.ox.ac.uk/~univ0675/blob/blobSplash.html

ISO/IEC. (1999). Information Technology - Security Techniques - Evaluation Criteria for IT Security - Part 1:
Introduction and General Model (International Standard No. 15408-1). Geneva Switzerland: ISO/IEC.

Jackson, M. (2001). Problem Frames: Addison Wesley.

Kelly, T. P. (1999). Arguing Safety - A Systematic Approach to Safety Case Management. Unpublished D.Phil
Dissertation, University of York, York.

Kotonya, G., & Sommerville, I. (1998). Requirements Engineering: Processes and Techniques. United Kingdom:
John Wiley and Sons.

van Lamsweerde, A. (2001). Goal-oriented Requirements Engineering: A Guided Tour. In Proceedings of the Fifth
IEEE International Symposium on Requirements Engineering (RE'01) (pp. 249-263). Toronto, Canada: IEEE
Computer Society Press.

van Lamsweerde, A. (2004). Elaborating Security Requirements by Construction of Intentional Anti-Models. In
Proceedings of the 26th International Conference on Software Engineering (ICSE'04) (pp. 148-157). Edinburgh
Scotland.

Lee, J., & Lai, K. Y. (1991). What's in Design Rationale? Human-Computer Interaction - Special Issue on Design
Rationale, 6(3-4), 251-280.

Lee, Y., Lee, J., & Lee, Z. (2002). Integrating Software Lifecycle Process Standards with Security Engineering.
Computers and Security, 21(4), 345-355.

Liu, L., Yu, E., & Mylopoulos, J. (2003). Security and Privacy Requirements Analysis Within a Social Setting. In
Proceedings of the 11th IEEE International Requirements Engineering Conference (RE'03). Monteray Bay, CA
USA.

McDermott, J., & Fox, C. (1999). Using Abuse Case Models for Security Requirements Analysis. In Proceedings of
the 15th Computer Security Applications Conference (ACSAC'99) (pp. 55-64). Phoenix AZ USA: IEEE Computer
Society Press.

Moffett, J. D., Haley, C. B., & Nuseibeh, B. (2004). Core Security Requirements Artefacts (Technical Report No.
2004/23). Milton Keynes UK: Department of Computing, The Open University.

Moffett, J. D., Hall, J. G., Coombes, A., & McDermid, J. A. (1996). A Model for a Causal Logic for Requirements
Engineering. Requirements Engineering, 1(1), 27-46.

Mouratidis, H., Giorgini, P., & Manson, G. (2003). Integrating Security and Systems Engineering: Toward the
Modelling of Secure Information Systems. In Proceedings of the The 15th Conference on Advanced Information
Systems Engineering (CAiSE'03). Klagenfurt/Velden, Austria: Springer-Verlag.

Mylopoulos, J., Borgida, A., Jarke, M., & Koubarakis, M. (1990). Telos: Representing Knowledge About
Information Systems. ACM Transactions on Information Systems (TOIS), 8(4), 325 - 362.

Newman, S. E., & Marshall, C. C. (1991). Pushing Toulmin Too Far: Learning From an Argument Representation
Scheme (Technical Report No. SSL-92-45). Palo Alto CA USA: Xerox PARC.

Nuseibeh, B. (2001). Weaving Together Requirements and Architectures. Computer (IEEE), 34(3), 115-117.

Potts, C., & Bruns, G. (1988). Recording the Reasons for Design Decisions. In Proceedings of the 10th International
Conference on Software Engineering (ICSE'88) (pp. 418-427). Singapore: IEEE Computer Society.

Ramesh, B., & Dhar, V. (1992). Supporting Systems Development by Capturing Deliberations During Requirements
Engineering. IEEE Transactions on Software Engineering, 18(6), 498-510.

Reed, C. (2005). Araucaria, from http://araucaria.computing.dundee.ac.uk/

Rushby, J. (2001). Security Requirements Specifications: How and What? In Proceedings of the Symposium on
Requirements Engineering for Information Security (SREIS). Indianapolis, IN USA.

Sindre, G., & Opdahl, A. L. (2000). Eliciting Security Requirements by Misuse Cases. In Proceedings of the 37th
International Conference on Technology of Object-Oriented Languages and Systems (TOOLS-Pacific'00) (pp. 120-
131). Sydney Australia.

Spafford, E. H. (1989). The internet worm program: an analysis. ACM SIGCOMM Computer Communication
Review, 19(1), 17-57.

Tettero, O., Out, D. J., Franken, H. M., & Schot, J. (1997). Information security embedded in the design of
telematics systems. Computers and Security, 16(2), 145-164.

Toulmin, S. E. (1958). The Uses of Argument. Cambridge: Cambridge University Press.

Toulmin, S. E., Rieke, R. D., & Janik, A. (1979). An Introduction to Reasoning. New York: Macmillan.

Yu, E. (1997). Towards Modelling and Reasoning Support for Early-Phase Requirements Engineering. In
Proceedings of the Third IEEE International Symposium on Requirements Engineering (RE'97) (pp. 226-235).
Annapolis MD USA.

Zave, P., & Jackson, M. (1997). Four Dark Corners of Requirements Engineering. Transactions on Software
Engineering and Methodology (ACM), 6(1), 1-30.

