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The authors describe their experiences applying a security requirements 
analysis to an air traffic control project using a framework that offers 
different forms of structured argumentation. In deploying the frame-
work, they also learned several lessons about security requirements.

W
e are regularly bombarded with reports 
of security incidents—confidentiality of 
information lost, integrity of assets dam-
aged, availability of products and services 
denied. In response we are quick to iden-

tify flaws in our systems, including poor passwords, lack 
of encryption, flawed access control, and lax organiza-
tional procedures. And rightly so—security, after all, is 
concerned with protecting our systems from harm. 

Nonetheless, there appears to be a disproportionate 
focus on protection—on mechanisms that implement secu-
rity. Security is as much about understanding the context 
in which systems operate as it is about the systems them-
selves. While developing secure software is important, our 
attention should be directed at the wider systems, of which 
software is only one part. It is in these larger sociotechnical 
systems that threats arise and harm can occur.1 

A sociotechnical system comprises hardware, software, 
and the organizational structures in which these entities 
function. It also comprises people—the stakeholders—in-
cluding both developers and users. While computer-based 
systems are indeed attacked, it is users and their assets 
that are harmed, whether this harm is physical, financial, 
informational, or social. Organizations must accordingly 
look beyond the system to examine what they are trying 
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to protect, why they are trying to protect it, and the con-
sequences of inadequate protection. The answers to these 
questions not only inform software design, but more im-
portantly, connect the design to the users, who will either 
benefit the most or be harmed by those systems.

The collection of activities aimed at answering these 
questions is termed security requirements engineering,2,3 
and we have developed a framework and associated tools 
to support these activities.4 As part of a feasibility study by 
the UK’s NATS, we used our framework to analyze security 
concerns about a new technology being considered for 
integration with existing air-traffic control (ATC) systems. 
Although NATS understands and fully considers the safety 
issues raised by potential use of new technologies, the 
systematic analysis facilitated by our framework exposed 
hidden assumptions about the behavior of the particular 
technologies being investigated, revealing potential secu-
rity problems that should be considered during a future 
project. Our experience also revealed insights about se-
curity requirements and their elicitation. 

Security Requirements Engineering 

Requirements engineering deals with the discovery 
of stakeholder expectations and their communication 
to developers responsible for realizing a subset of those 
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expectations.5 There is increasing recognition that RE’s 
focus on understanding stakeholder problems facilitates 
the design and implementation of effective solutions. 

Security requirements pose a set of technical challenges 
to RE that together make it a distinctive and important area 
of investigation.6 These challenges include the following: 

Stakeholder identification.•	  People with malicious 
intent must be considered. 
Problem scoping.•	  The scope of security requirements 
must include the wider system context, including poli-
cies and procedures. 
Requirements representation•	 . Security requirements 
are expressed in terms of prohibition or prevention—
what must not happen in a system.
Requirements analysis.•	  Attackers may repeatedly ex-
ploit a single flaw in a system’s security requirements 
until it is fixed. 

To address these challenges, our framework guides 
the discovery and articulation of security requirements. 
The requirements should not be overly general—for 
example, “the system shall maintain confidentiality of 
data”—or overly specific, such as “the system shall en-
crypt all passwords.” Our framework is built around the 
following premises: 

Security goals aim to protect assets from harm. •	
Security goals are operationalized into security re-•	
quirements. These requirements express constraints 
on the functional requirements sufficient to protect 
the assets from harm as well as define a desired qual-
ity of service.
Feasible realizations of security requirements may •	
lead to the addition of secondary security goals, which 
might manifest themselves as additional functional or 
security requirements. 
Security satisfaction arguments show that a system •	
can respect the security requirements. Attempting to 
construct these arguments exposes trust assumptions 
and oversights within the system that can profoundly 
affect security. 

Although we distinguish security and functional 
requirements, here for reasons of clarity we avoid the de-
batable distinction between functional and nonfunctional 
requirements.7 

Activities

Our framework comprises a set of activities for moving 
from functional goals to security satisfaction arguments, 
as Figure 1 shows.4 The activities cover four steps:

	 1.	 identifying functional requirements, 
	 2.	 identifying security goals,
	 3.	 identifying security requirements, and 
	 4.	 constructing security satisfaction arguments. 

Here we focus on step 4, where some of the most re-
vealing analysis takes place. This step concentrates on 
whether the system can satisfy the security requirements 
by exposing trust assumptions, checking that the system 
accounts for the risks introduced by these assumptions, 
and constructing satisfaction arguments to convince a 
reader that a system can satisfy the security requirements 
laid upon it. 

These arguments are in two parts. The first part, the 
outer argument, is a formal argument that a system can 
satisfy its security requirements, drawing upon claims 
about the behavior of domains in a system. The second 
part, the inner argument, consists of structured informal 

arguments to support the claims about system behav-
ior made in the outer argument. This mixture makes it 
possible to explore the satisfaction of security require-
ments with varying degrees of rigor.8 The most formal 
arguments constitute a proof, whereas the less formal 
arguments inevitably rely on trust assumptions that may 
be challenged and that may require evidence to hold up 
to such scrutiny. 

Iteration 

One reason that an analyst may fail to construct a 
convincing argument is that there is not enough infor-
mation available to justify some claim. For example, to 
justify a claim that users are authenticated, something 
must be exchanged between the user and the rest of the 
system. Our framework thus assumes that the process 
is iterative;9 when necessary, designers must add more 
detail to the system context to permit justification of 
claims. These iterations move from step 4 back to steps 
1 or 2, possibly requiring the addition of new function. 

The analyst might establish that there is no feasible 
way to satisfy the security requirement(s). In this case, 
designers and stakeholders must agree on an acceptable 
alternative, such as weaker requirements, or simply decide 
that the system is infeasible. 

One reason that an analyst may fail  
to construct a convincing argument is 
that there is not enough information 
available to justify some claim.
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Figure 1. Process activity diagram. Activities cover four steps: (1) identifying functional requirements, (2) identifying security goals, (3) 
identifying security requirements, and (4) constructing security satisfaction arguments.
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Air Traffic Control Project 

We applied our framework to a problem being con-
sidered by the CRISTAL UK project, a research initiative 
managed by NATS for the European Organisation for the 
Safety of Air Transportation (Eurocontrol) CASCADE pro-
gram in collaboration with Raytheon Systems Ltd., SITA, 
and QinetiQ. The project was charged with “determining 
the role of ‘passive surveillance’ in NATS future surveil-
lance system[s]”—that is, investigating the potential role 
of emerging surveillance technologies that use GPS for 
ATC areas where radar is used currently, such as in and 
around the airspace at busy airports.10 

ATC 

ATC is responsible for the safe and efficient move-
ment of aircraft through a given airspace. Unfortunately, 
“safe” and “efficient” are at odds with each other. An 
empty airspace is safe but also very inefficient. Adding 
aircraft into the airspace increases efficiency but also 
increases the risk of a loss of separation. Air traffic 
controllers try to minimize risk by maintaining safe 
distances between aircraft. This requires knowing the 
identity and position of aircraft with a high degree of 
accuracy, integrity, and assurance. 

Controllers maintain safe separation between air-
craft while ensuring that they get to their destination 
efficiently. The minimum separation required between 
aircraft depends on many factors including the aircrafts’ 
speed, surveillance accuracy, surveillance system redun-
dancy, and the ability to spot and rectify mistakes.

ATC currently uses active surveillance systems such as 
radar to determine an aircraft’s position. The project’s pri-
mary goal was to examine alternative means for providing 
this surveillance data that met the same minimum per-
formance requirements. It further examined the impact 
of improving how often the surveillance system informs a 
controller where an aircraft actually is and enhancements 
to the accuracy of this position information. 

Active surveillance

Active surveillance determines the position of aircraft 
independently of the aircraft itself. 

Primary radar, which operates by broadcasting direc-
tional pulses and listening for reflections, is independent, 
requiring no specific equipment on the aircraft. It provides 
only the aircraft’s distance from the radar.

Secondary radar uses highly directional interrogations. 
It is cooperative in that it expects aircraft to respond to 
the interrogation in a fixed time. Secondary radar will not 
see aircraft that do not respond. It calculates an aircraft’s 
relative distance and bearing in the same way as primary 
radar, but the response may also contain information such 
as the aircraft’s identity and altitude. 

Passive surveillance

Passive surveillance uses equipment that listens for 
transmissions from aircraft, then computes the position 
using that transmission; the surveillance system makes 
no request of the aircraft for transmission. 

Automatic Dependent Surveillance—Broadcast uses on-
board satellite navigation technology to determine where 
the aircraft is, and then broadcasts that position without 
the need for pilot input or radar interrogation. A surveil-
lance system listening to ADS-B broadcasts depends on 
aircraft broadcasting accurate positions; it will misplace 
an aircraft that maliciously or through equipment failure 
reports an incorrect position. 

A second technique, multilateration, uses a network 
of multiple receivers to determine the intersection of 
the hyperboloids described by the difference in arrival 
time of the transmission at each receiver—this is used 
to determine the transmitter’s position. Like secondary 
radar, position computation depends solely on the timing 
of the receipt of signals. 

Passive surveillance has become more attractive to 
ATC service providers in recent years because aircraft 
are increasingly being equipped with suitable avionics. 
In addition to the technologies’ perceived operational 
benefits, they offer potentially significant cost savings in 
procurement and through-life maintenance costs over tra-
ditional surveillance means. The open question is whether 
the benefits can be obtained with adequate safety and 
security. 

Example Security  
Requirements Analysis 

A key issue is whether ADS-B position reports 
should be used as a primary position source for air-
craft. We analyzed the security implications of this 
question using our framework, stepping through the  
activities shown in Figure 1. Although our analysis included 
three iterations, we discuss only one here. 

Step 1

We began by identifying the functional goal(s) of the 
system under analysis, describing the system context, 
and identifying the functional requirement(s). Three proj-
ect characteristics dramatically simplified this task. 

The open question is whether the  
benefits of passive surveillance can  
be obtained with adequate safety  
and security.



Figure 2. System context: (a) Iteration 1 and (b) with constrained 
functional requirement.

First, project partners supplied working ADS-B equip-
ment. We treated this equipment as given, simplifying the 
requirements. 

Second, the initial functional goal was given:
 

		  FG1: Provide safe and efficient air traffic manage-
ment. 

Third, given this goal and the project’s remit, we were 
able to summarize the functional requirement as 

		  FR1: Provide positions of aircraft. 

The remaining task was to determine the system con-
text, which is shown in Figure 2a. We describe contexts 
using problem diagrams derived from Problem Frames,11 
where a dashed oval denotes the requirements of a ma-
chine, which in turn is denoted by a rectangle with two 
vertical lines on the side. Rectangles indicate domains in 
the system context. Connecting lines denote shared phe-

nomena such as events between domains (dashed 
if connected to a requirement), while a dashed 
line with a solid arrow indicates a requirement’s 
constraining effect on a domain. The dashed lines 
with outline arrowheads are our own annotation to 
problem diagrams, and they mark the names of the 
shared phenomena. 

Step 2

We next determined the assets involved with 
the system, the harms, and the security goals to 
avoid those harms. The direct assets are the GPS 
receivers and signals, aircraft, aircraft positions 
(broadcast), ground receivers, and the ATC system 
including the controllers. The indirect assets are 
the passengers and other aircraft contents; items 
around the ATC area such as buildings, infrastruc-
ture, and the airport; and the aircraft owner’s 
business—reputation, profitability, and so on. 

Using this list of assets, we determined with the 
help of the project’s domain experts the harms in-
volved in the system, and then identified the threat 
descriptions in the form “violation of general se-
curity goal” on “asset” can cause “harm.” Threat 
descriptions include the following: 

General goal—confidentiality: 

	 T1: {publicizing, airplanes’ position, facilitating  
	 attack in air} 
	 T2: {publicizing, airplanes’ position, loss of trade  
	 secrets} 

We decided that threats T1 and T2 were out-
side the project’s remit and thus did not consider them 
further. 

General goal—integrity: 

		  T3: {~correct, airplanes’ position, lost property due to 
collision or crash} 

		  T4: {~correct, airplanes’ position, lost revenue due to 
increased separation} 

		  T5: {~correct, airplanes’ position, lost revenue due to 
lost confidence}

General goal—availability: 

		  T6: {~available, airplanes’ position, lost property due 
to collision or crash} 

		  T7: {~available, airplanes’ position, lost revenue due 
to increased separation} 

		  T8: {~available, airplanes’ position, lost revenue due 
to lost confidence} 

Rese arch Fe ature

computer	50

AP!XMIT
Aircraft transmits
accurate position

AP!RECV
Aircraft receives

accurate GPS info

MIPOSREPORT
ATC!HASPOS

Positions sent
and up to date

RISEND
Receiver sends

positions ADS-B
receiver

ATC
system

Aircraft
with ADS-B GPS

Machine
Provide positions of aircraft
• positions must be accurate
• positions must be timely

Transmitted ADS-B
messages

Positions when
needed

Positions when
received ADS-B

receiver

ATC
system

Aircraft
with ADS-B GPS

Machine

Provide positions of aircraft

(a)

(b)



51SEPTEMBER 2009

We determined the system’s security goals by avoiding 
the action in the threat descriptions: 

		  SG1: Have correct positions (avoids T3, T4, and T5) 
		  SG2: Report positions as often as needed (avoids T6, 

T7, T8) 

Step 3

In this step we determined the constraints to place on 
the functional requirements, which in this case was FR1. 
NATS requires aircraft positions to be highly accurate and 
timely, with the specific requirements depending on the 
application. ADS-B can potentially improve upon both of 
these aspects by an order of magnitude, and the conse-
quences must be studied. 

We composed the security goals and the functional 
requirement, resulting in a constrained functional re-
quirement. The composition produced two security 
requirements (constraints), the first of which was:

		  SR1: [FR1: Provide positions of aircraft]: positions shall 
be accurate. SR1 operationalizes SG1. 

The second requirement was: 

		  SR2: [FR1: Provide positions of aircraft]: positions shall 
be timely. SR2 operationalizes SG2. 

Figure 2b shows the system context with the constrained 
functional requirement. 

Step 4

During this step we tested our context, checking 
if the system could satisfy the security requirements 
given our assumptions about behavior. By construct-
ing the formal outer argument, we determined which 
behavior assumptions were important to security. To 
build the outer argument, we annotated the context with 
the events exchanged between domains, developed a 
simplified behavioral specification for the system, and 
then used the events and behavioral specification as 
premises in a proof that the system could satisfy the 
security requirements. The word “could” is important; 
the proof assumes that any implementation will behave 
as assumed. We recognize this is a large caveat, but it 
does not negate the usefulness of understanding what 
is being secured and why. 

Outer argument. We first construct a proof that if cer-
tain conditions hold, the system could meet its security 
requirements. To do this we model the events in the system 
and the system’s behavior, then construct the proof. 

As Figure 2b shows, the events exchanged within 
the system, which use the naming convention “sending 
domain!message,” are: 

		  AP!RECV: The aircraft receives GPS broadcasts. 
		  AP!XMIT: The aircraft transmits its position. 
		  R!SEND: The receiver sends the position to the 

machine. 
		  M!POSREPORT: The machine sends the position to the 

ATC system. 
		  ATC!HASPOS: The ATC confirms that it has the air-

craft’s position. 

We built the behavioral specification using a variant of 
a causal logic:12 

		  AP!RECV shall cause AP!XMIT 
		  AP!XMIT shall cause R!SEND 
		  R!SEND shall cause M!POSREPORT 
		  M!POSREPORT shall cause ATC!HASPOS 

We recognized that reception of GPS signals by an air-
craft does not in fact cause it to transmit position reports 
but instead enables them. We chose to accept this slight 
misstatement instead of adding the complexity of time-
based events to the proof. 

Logically, we wanted to prove that given the behavior, the 
air traffic controller would have the aircrafts’ positions:

		  AP!RECV → ATC!HASPOS 

This would prove that the system could satisfy both SR1 
(accuracy) and SR2 (timeliness) assuming that the

events were described correctly, •	
behavior specification was correct and no undocu-•	
mented conflicting behavior existed, and 
implementation would not introduce any conflicting •	
behavior. 

We would challenge these assumptions later when build-
ing the informal inner arguments.

We constructed the following proof using propositional 
logic because we felt that this form of proof would be easier 
to explain to the project participants:

	 1. 	AP!RECV → AP!XMIT 	 (premise: AP!RECV  
	 shall cause AP!  
	 MIT) 

	 2. 	AP!XMIT → R!SEND 	 (premise: AP!XMIT  
	 shall cause R!SEND) 

By constructing the formal outer 
argument, we determined which  
behavior assumptions were  
important to security.
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Figure 3. Argument for AP!RECV → AP!XMIT. 

	 3. 	R!SEND → M!POSREPORT 	 (premise: R!SEND  
	 shall cause  
	 M!POSREPORT) 

	 4. 	M!POSREPORT → ATC!HASPOS 	 (premise:  
	 M!POSREPORT shall  
	 cause ATC!HASPOS) 

	 5. 	AP!RECV 	 (assumption) 
	 6. 	AP!XMIT 	 (detach, 1, 5) 
	 7. 	R!SEND 	 (detach, 2, 6) 
	 8. 	M!POSREPORT 	 (detach, 3, 7) 
	 9. 	ATC!HASPOS 	 (detach, 4, 8) 

“Premise” refers to implications derived from the behav-
ior specification, and “detach” refers to the application of 
logical deduction to the two premises indicated (modus 
ponens). Further details of the proof’s construction are 
beyond the scope of this article. 

Inner arguments. Steps 1 through 5 of the outer 
argument must hold for the system to be secure. 
The purpose of inner arguments is to challenge such 
assumptions—to establish whether or not they hold in 
the real world. 

We represent inner arguments using a variant of 
Toulmin’s argumentation diagrams,13 although other ar-
gumentation representations such as those proposed by 
T.P. Kelly14 are available. The general form of a Toulmin-
based argument is: grounds, justified by warrants, lead to 
claim, except when rebuttals. The claim is the argument’s 
conclusion. Grounds are assumptions or evidence used to 
support the claim. Warrants are connections that justify 
the use of the grounds, and rebuttals are cases where as-
serting the claim would not be justified. 

We first diagrammed an argument to support one of 
the claims, then tried to find rebuttals, or reasons why the 
argument might not hold. Figure 3 shows the argument 
for the first claim, AP!RECV → AP!XMIT, along with three 

rebuttals. The text in parentheses—for example, SR2—is 
the security requirement that the rebuttal violates. Other 
figures, not included here, showed the arguments for prem-
ises 2 through 4 (numbers of the lines in the proof) and for 
the assumption (line 5). In all, there were 12 rebuttals in 
the arguments, three of which are shown in Figure 3: R1.1, 
R1.2, and R1.3. 

These rebuttals fall into two general categories: 
sabotage of equipment (R1.1, R1.2), and the intentional 
transmission of incorrect data (R1.3). We evaluated each 
one to determine whether it should be mitigated, and if so 
how. Mitigating a rebuttal requires an iteration within the 
framework. In this project, we felt that R1.3, aircraft mis-
representing their positions, presented an unacceptable 
risk of accident or terrorism. We mitigated R1.3 by adding 
multilateration, a function that computes a transmitter’s 
position to verify that the aircraft is near to where it says 
it is. We then subjected the new context to another itera-
tion and found rebuttals to the mitigation; a determined 
attacker could use specially timed transmissions to con-
fuse multilateration. We considered several mitigations 
to this new rebuttal. 

Lessons Learned 

Several lessons about security requirements engi-
neering emerged directly from our experiences in ATC 
development. They appear to be more widely applicable, 
although evidence for this is limited to examples of apply-
ing our framework on a smaller scale. 

Exploit the experts. Identifying security requirements 
requires a combination of the application of established 
security engineering practices with deep analysis of the 
problem domain in which security problems may arise. 
Our experience suggests that domain knowledge is essen-
tial to understanding the subtleties of the security threats 
and to address their often very technical nature. Indeed, 
what distinguished our research from similar work4 was 
the addition of such domain expertise to our team. 

Exploit the nonexperts. While domain knowledge and 
expertise are essential for security requirements analysis, 
experts can often neglect to question assumptions. In fact, 
we found that it was easy for domain experts to implic-
itly assume that something behaves in a certain manner 
because that is how it has always behaved. Domain nonex-
perts have helped us on projects by asking crucial “why?” 
questions at unexpected times. Of course, once they asked 
the questions, a chain of arguments ensued. 

Scope the problem. Security problems expand the 
system context in unexpected ways. For example, the 
buildings in a city are usually not part of an ATC problem 
until considering whether an aircraft may fly into one; 
neither are GPS satellite signals, until GPS jammers are 
considered. The challenge we faced was to expand the 
context as much as necessary, but no more than that. 

Received GPS
positions are

accurate

Accurate
positions are
transmitted

Calculations
are accurate

Grounds

Warrants

Claim

R1.1: Aircraft’s GPS sabotaged (SR2)

R1.2: ADS-B transmitter sabotaged (SR2)

R1.3: Aircrew transmits wrong position/ID (SR1)
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Issues of problem definition and scoping are well known 
to RE practitioners and a welcome addition to security 
analysts. 

Iterate to mitigate. Eliciting requirements is often 
regarded as an activity undertaken early in the develop-
ment life cycle—not so for a security engineering life 
cycle. Robust security requirements evolve iteratively 
as analysts consider mitigations. However, iteration 
requires careful management to ensure the detection of 
interactions. We found that the choice to represent miti-
gations in the context of their rebuttals led naturally to 
considering them one at a time, when in fact they should 
be considered together as part of a complete analysis. 
For example, it makes sense to consider all the jamming 
scenarios together—for example, ADS-B, clock sync, and 

GPS jamming—instead of considering them independ-
ently. The composition of local analyses to obtain a more 
complete analysis remains an open and challenging 
question, although iteration can sometimes help. 

Formalize but argue informally too. Formalization of 
security requirements and their satisfaction arguments 
clearly facilitated our analysis. However, we also found 
that formal (outer) arguments were difficult to construct 
and explain. One problem was the nature of the proof. 
The outer argument proves that if the assumptions are 
valid, the behavior specification is correct, and there are 
no other behaviors, then the system can be secure. The 
informal inner arguments help demonstrate the truth of 
the series of ifs. Security is often as much about being 
persuaded “beyond reasonable doubt” that a system  

Further Reading 

T here is increasing recognition of the importance and role 
of security requirements. Explicit consideration of secu-

rity requirements has traditionally fallen in the general areas 
of risk and threat assessment.1,2 The Common Criteria3 man-
date the consideration of security requirements explicitly, 
while recent security methodologies4-6 provide frameworks 
within which to do so. 

Researchers have used abuse cases7 and misuse cases8 to elicit 
scenarios describing potentially malicious usage of systems, 
while other more formal techniques used to check security 
properties automatically assume a detailed specification is 
available.9 Ross Anderson advocates combining human effort 
to identify system vulnerabilities.10 

Our work falls within what Jeannette Wing11 calls application-
layer security. This includes research examining the social,12 
organizational,13,14 and technical15 subversion of stakeholder 
goals. John Viega and Gary McGraw first advocated the 
explicit introduction of trust assumptions during security 
analysis.16 
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is secure than it is about a proof of security, whatever 
that means. 

A
n important motivator for engaging in security 
requirements engineering is to discover and 
articulate security requirements early during 
development, before substantial investment in 
design and implementation. Security require-

ments are often elicited directly from stakeholders, which 
inevitably increases the likelihood of identifying and 
protecting their most relevant assets. This is an area of 
increasingly active research,15,16 although some of the more 
popular approaches, such as misuse cases17 and threat 
trees,1 still assume the existence of “a system” and some 
known system behavior. The “Further Reading” sidebar 
highlights classic and recent research on the importance 
and role of security requirements.

Comprehensive tool support is urgently needed to 
more easily construct arguments and to better represent 
and communicate them to people with varied capabili-
ties at handling formality. Of course, articulating clear 
security requirements and robust satisfaction arguments 
may be insufficient to achieve the desired level of se-
curity. A faulty specification or implementation of the 
security requirements can introduce security vulner-
abilities. Further research is needed to better understand 
the relationships between security requirements and 
designs to mitigate against the exploitation of such vul-
nerabilities. 
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