
Rese arch FEA TURE

computer	46 Published by the IEEE Computer Society 0018-9162/09/$26.00 © 2009 IEEE	

The authors describe their experiences applying a security requirements
analysis to an air traffic control project using a framework that offers
different forms of structured argumentation. In deploying the frame-
work, they also learned several lessons about security requirements.

W
e are regularly bombarded with reports
of security incidents—confidentiality of
information lost, integrity of assets dam-
aged, availability of products and services
denied. In response we are quick to iden-

tify flaws in our systems, including poor passwords, lack
of encryption, flawed access control, and lax organiza-
tional procedures. And rightly so—security, after all, is
concerned with protecting our systems from harm.

Nonetheless, there appears to be a disproportionate
focus on protection—on mechanisms that implement secu-
rity. Security is as much about understanding the context
in which systems operate as it is about the systems them-
selves. While developing secure software is important, our
attention should be directed at the wider systems, of which
software is only one part. It is in these larger sociotechnical
systems that threats arise and harm can occur.1

A sociotechnical system comprises hardware, software,
and the organizational structures in which these entities
function. It also comprises people—the stakeholders—in-
cluding both developers and users. While computer-based
systems are indeed attacked, it is users and their assets
that are harmed, whether this harm is physical, financial,
informational, or social. Organizations must accordingly
look beyond the system to examine what they are trying

	 Bashar Nuseibeh and Charles B. Haley, The Open University

	 Craig Foster, NATS

to protect, why they are trying to protect it, and the con-
sequences of inadequate protection. The answers to these
questions not only inform software design, but more im-
portantly, connect the design to the users, who will either
benefit the most or be harmed by those systems.

The collection of activities aimed at answering these
questions is termed security requirements engineering,2,3
and we have developed a framework and associated tools
to support these activities.4 As part of a feasibility study by
the UK’s NATS, we used our framework to analyze security
concerns about a new technology being considered for
integration with existing air-traffic control (ATC) systems.
Although NATS understands and fully considers the safety
issues raised by potential use of new technologies, the
systematic analysis facilitated by our framework exposed
hidden assumptions about the behavior of the particular
technologies being investigated, revealing potential secu-
rity problems that should be considered during a future
project. Our experience also revealed insights about se-
curity requirements and their elicitation.

Security Requirements Engineering

Requirements engineering deals with the discovery
of stakeholder expectations and their communication
to developers responsible for realizing a subset of those

SECURING THE SKIES:
IN REQUIREMENTS
WE TRUST

charles
Text Box
©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

47SEPTEMBER 2009

expectations.5 There is increasing recognition that RE’s
focus on understanding stakeholder problems facilitates
the design and implementation of effective solutions.

Security requirements pose a set of technical challenges
to RE that together make it a distinctive and important area
of investigation.6 These challenges include the following:

Stakeholder identification.•	 People with malicious
intent must be considered.
Problem scoping.•	 The scope of security requirements
must include the wider system context, including poli-
cies and procedures.
Requirements representation•	 . Security requirements
are expressed in terms of prohibition or prevention—
what must not happen in a system.
Requirements analysis.•	 Attackers may repeatedly ex-
ploit a single flaw in a system’s security requirements
until it is fixed.

To address these challenges, our framework guides
the discovery and articulation of security requirements.
The requirements should not be overly general—for
example, “the system shall maintain confidentiality of
data”—or overly specific, such as “the system shall en-
crypt all passwords.” Our framework is built around the
following premises:

Security goals aim to protect assets from harm. •	
Security goals are operationalized into security re-•	
quirements. These requirements express constraints
on the functional requirements sufficient to protect
the assets from harm as well as define a desired qual-
ity of service.
Feasible realizations of security requirements may •	
lead to the addition of secondary security goals, which
might manifest themselves as additional functional or
security requirements.
Security satisfaction arguments show that a system •	
can respect the security requirements. Attempting to
construct these arguments exposes trust assumptions
and oversights within the system that can profoundly
affect security.

Although we distinguish security and functional
requirements, here for reasons of clarity we avoid the de-
batable distinction between functional and nonfunctional
requirements.7

Activities

Our framework comprises a set of activities for moving
from functional goals to security satisfaction arguments,
as Figure 1 shows.4 The activities cover four steps:

	 1.	 identifying functional requirements,
	 2.	 identifying security goals,
	 3.	 identifying security requirements, and
	 4.	 constructing security satisfaction arguments.

Here we focus on step 4, where some of the most re-
vealing analysis takes place. This step concentrates on
whether the system can satisfy the security requirements
by exposing trust assumptions, checking that the system
accounts for the risks introduced by these assumptions,
and constructing satisfaction arguments to convince a
reader that a system can satisfy the security requirements
laid upon it.

These arguments are in two parts. The first part, the
outer argument, is a formal argument that a system can
satisfy its security requirements, drawing upon claims
about the behavior of domains in a system. The second
part, the inner argument, consists of structured informal

arguments to support the claims about system behav-
ior made in the outer argument. This mixture makes it
possible to explore the satisfaction of security require-
ments with varying degrees of rigor.8 The most formal
arguments constitute a proof, whereas the less formal
arguments inevitably rely on trust assumptions that may
be challenged and that may require evidence to hold up
to such scrutiny.

Iteration

One reason that an analyst may fail to construct a
convincing argument is that there is not enough infor-
mation available to justify some claim. For example, to
justify a claim that users are authenticated, something
must be exchanged between the user and the rest of the
system. Our framework thus assumes that the process
is iterative;9 when necessary, designers must add more
detail to the system context to permit justification of
claims. These iterations move from step 4 back to steps
1 or 2, possibly requiring the addition of new function.

The analyst might establish that there is no feasible
way to satisfy the security requirement(s). In this case,
designers and stakeholders must agree on an acceptable
alternative, such as weaker requirements, or simply decide
that the system is infeasible.

One reason that an analyst may fail
to construct a convincing argument is
that there is not enough information
available to justify some claim.

Rese arch Fe ature

computer	48

Figure 1. Process activity diagram. Activities cover four steps: (1) identifying functional requirements, (2) identifying security goals, (3)
identifying security requirements, and (4) constructing security satisfaction arguments.

Validate security goals
against assets, threats,

and business goals

Elicit/revise application
business goals and quality goals

Identify/revise and
validate security goals

Validate security
requirements satisfy

security goals

Construct/revise
security requirements

Validate security
requirements can be

satisfied by system context

Revise and verify
system context

Elicit/revise assetsSelect security control
principles (such as LPP)

Determine secondary
security goals

General system activity

Security activity
(construct/verify)

Security
validation/verification

Construct
system
context

Elicit/revise
functional

requirements

[Not feasible]

[Not
feasible]

[Not
feasible]

[OK]

[Not
feasible]

[Not
OK]

[Feasible]

[Feasible]

[Feasible]

[OK]

[OK]

If OK branch is taken,
functional requirements

flow along this line

[Not feasible]

[Not
OK]

[Not
OK]

[Not
feasible]

Secondary
security goals

[OK]

[OK]

[Not
feasible]

Two-part satisfaction
arguments built during

this step

3

4

1

2

[OK]

49SEPTEMBER 2009

Air Traffic Control Project

We applied our framework to a problem being con-
sidered by the CRISTAL UK project, a research initiative
managed by NATS for the European Organisation for the
Safety of Air Transportation (Eurocontrol) CASCADE pro-
gram in collaboration with Raytheon Systems Ltd., SITA,
and QinetiQ. The project was charged with “determining
the role of ‘passive surveillance’ in NATS future surveil-
lance system[s]”—that is, investigating the potential role
of emerging surveillance technologies that use GPS for
ATC areas where radar is used currently, such as in and
around the airspace at busy airports.10

ATC

ATC is responsible for the safe and efficient move-
ment of aircraft through a given airspace. Unfortunately,
“safe” and “efficient” are at odds with each other. An
empty airspace is safe but also very inefficient. Adding
aircraft into the airspace increases efficiency but also
increases the risk of a loss of separation. Air traffic
controllers try to minimize risk by maintaining safe
distances between aircraft. This requires knowing the
identity and position of aircraft with a high degree of
accuracy, integrity, and assurance.

Controllers maintain safe separation between air-
craft while ensuring that they get to their destination
efficiently. The minimum separation required between
aircraft depends on many factors including the aircrafts’
speed, surveillance accuracy, surveillance system redun-
dancy, and the ability to spot and rectify mistakes.

ATC currently uses active surveillance systems such as
radar to determine an aircraft’s position. The project’s pri-
mary goal was to examine alternative means for providing
this surveillance data that met the same minimum per-
formance requirements. It further examined the impact
of improving how often the surveillance system informs a
controller where an aircraft actually is and enhancements
to the accuracy of this position information.

Active surveillance

Active surveillance determines the position of aircraft
independently of the aircraft itself.

Primary radar, which operates by broadcasting direc-
tional pulses and listening for reflections, is independent,
requiring no specific equipment on the aircraft. It provides
only the aircraft’s distance from the radar.

Secondary radar uses highly directional interrogations.
It is cooperative in that it expects aircraft to respond to
the interrogation in a fixed time. Secondary radar will not
see aircraft that do not respond. It calculates an aircraft’s
relative distance and bearing in the same way as primary
radar, but the response may also contain information such
as the aircraft’s identity and altitude.

Passive surveillance

Passive surveillance uses equipment that listens for
transmissions from aircraft, then computes the position
using that transmission; the surveillance system makes
no request of the aircraft for transmission.

Automatic Dependent Surveillance—Broadcast uses on-
board satellite navigation technology to determine where
the aircraft is, and then broadcasts that position without
the need for pilot input or radar interrogation. A surveil-
lance system listening to ADS-B broadcasts depends on
aircraft broadcasting accurate positions; it will misplace
an aircraft that maliciously or through equipment failure
reports an incorrect position.

A second technique, multilateration, uses a network
of multiple receivers to determine the intersection of
the hyperboloids described by the difference in arrival
time of the transmission at each receiver—this is used
to determine the transmitter’s position. Like secondary
radar, position computation depends solely on the timing
of the receipt of signals.

Passive surveillance has become more attractive to
ATC service providers in recent years because aircraft
are increasingly being equipped with suitable avionics.
In addition to the technologies’ perceived operational
benefits, they offer potentially significant cost savings in
procurement and through-life maintenance costs over tra-
ditional surveillance means. The open question is whether
the benefits can be obtained with adequate safety and
security.

Example Security
Requirements Analysis

A key issue is whether ADS-B position reports
should be used as a primary position source for air-
craft. We analyzed the security implications of this
question using our framework, stepping through the
activities shown in Figure 1. Although our analysis included
three iterations, we discuss only one here.

Step 1

We began by identifying the functional goal(s) of the
system under analysis, describing the system context,
and identifying the functional requirement(s). Three proj-
ect characteristics dramatically simplified this task.

The open question is whether the
benefits of passive surveillance can
be obtained with adequate safety
and security.

Figure 2. System context: (a) Iteration 1 and (b) with constrained
functional requirement.

First, project partners supplied working ADS-B equip-
ment. We treated this equipment as given, simplifying the
requirements.

Second, the initial functional goal was given:

		 FG1: Provide safe and efficient air traffic manage-
ment.

Third, given this goal and the project’s remit, we were
able to summarize the functional requirement as

		 FR1: Provide positions of aircraft.

The remaining task was to determine the system con-
text, which is shown in Figure 2a. We describe contexts
using problem diagrams derived from Problem Frames,11
where a dashed oval denotes the requirements of a ma-
chine, which in turn is denoted by a rectangle with two
vertical lines on the side. Rectangles indicate domains in
the system context. Connecting lines denote shared phe-

nomena such as events between domains (dashed
if connected to a requirement), while a dashed
line with a solid arrow indicates a requirement’s
constraining effect on a domain. The dashed lines
with outline arrowheads are our own annotation to
problem diagrams, and they mark the names of the
shared phenomena.

Step 2

We next determined the assets involved with
the system, the harms, and the security goals to
avoid those harms. The direct assets are the GPS
receivers and signals, aircraft, aircraft positions
(broadcast), ground receivers, and the ATC system
including the controllers. The indirect assets are
the passengers and other aircraft contents; items
around the ATC area such as buildings, infrastruc-
ture, and the airport; and the aircraft owner’s
business—reputation, profitability, and so on.

Using this list of assets, we determined with the
help of the project’s domain experts the harms in-
volved in the system, and then identified the threat
descriptions in the form “violation of general se-
curity goal” on “asset” can cause “harm.” Threat
descriptions include the following:

General goal—confidentiality:

	 T1: {publicizing, airplanes’ position, facilitating
	 attack in air}
	 T2: {publicizing, airplanes’ position, loss of trade
	 secrets}

We decided that threats T1 and T2 were out-
side the project’s remit and thus did not consider them
further.

General goal—integrity:

		 T3: {~correct, airplanes’ position, lost property due to
collision or crash}

		 T4: {~correct, airplanes’ position, lost revenue due to
increased separation}

		 T5: {~correct, airplanes’ position, lost revenue due to
lost confidence}

General goal—availability:

		 T6: {~available, airplanes’ position, lost property due
to collision or crash}

		 T7: {~available, airplanes’ position, lost revenue due
to increased separation}

		 T8: {~available, airplanes’ position, lost revenue due
to lost confidence}

Rese arch Fe ature

computer	50

AP!XMIT
Aircraft transmits
accurate position

AP!RECV
Aircraft receives

accurate GPS info

MIPOSREPORT
ATC!HASPOS

Positions sent
and up to date

RISEND
Receiver sends

positions ADS-B
receiver

ATC
system

Aircraft
with ADS-B GPS

Machine
Provide positions of aircraft
• positions must be accurate
• positions must be timely

Transmitted ADS-B
messages

Positions when
needed

Positions when
received ADS-B

receiver

ATC
system

Aircraft
with ADS-B GPS

Machine

Provide positions of aircraft

(a)

(b)

51SEPTEMBER 2009

We determined the system’s security goals by avoiding
the action in the threat descriptions:

		 SG1: Have correct positions (avoids T3, T4, and T5)
		 SG2: Report positions as often as needed (avoids T6,

T7, T8)

Step 3

In this step we determined the constraints to place on
the functional requirements, which in this case was FR1.
NATS requires aircraft positions to be highly accurate and
timely, with the specific requirements depending on the
application. ADS-B can potentially improve upon both of
these aspects by an order of magnitude, and the conse-
quences must be studied.

We composed the security goals and the functional
requirement, resulting in a constrained functional re-
quirement. The composition produced two security
requirements (constraints), the first of which was:

		 SR1: [FR1: Provide positions of aircraft]: positions shall
be accurate. SR1 operationalizes SG1.

The second requirement was:

		 SR2: [FR1: Provide positions of aircraft]: positions shall
be timely. SR2 operationalizes SG2.

Figure 2b shows the system context with the constrained
functional requirement.

Step 4

During this step we tested our context, checking
if the system could satisfy the security requirements
given our assumptions about behavior. By construct-
ing the formal outer argument, we determined which
behavior assumptions were important to security. To
build the outer argument, we annotated the context with
the events exchanged between domains, developed a
simplified behavioral specification for the system, and
then used the events and behavioral specification as
premises in a proof that the system could satisfy the
security requirements. The word “could” is important;
the proof assumes that any implementation will behave
as assumed. We recognize this is a large caveat, but it
does not negate the usefulness of understanding what
is being secured and why.

Outer argument. We first construct a proof that if cer-
tain conditions hold, the system could meet its security
requirements. To do this we model the events in the system
and the system’s behavior, then construct the proof.

As Figure 2b shows, the events exchanged within
the system, which use the naming convention “sending
domain!message,” are:

		 AP!RECV: The aircraft receives GPS broadcasts.
		 AP!XMIT: The aircraft transmits its position.
		 R!SEND: The receiver sends the position to the

machine.
		 M!POSREPORT: The machine sends the position to the

ATC system.
		 ATC!HASPOS: The ATC confirms that it has the air-

craft’s position.

We built the behavioral specification using a variant of
a causal logic:12

		 AP!RECV shall cause AP!XMIT
		 AP!XMIT shall cause R!SEND
		 R!SEND shall cause M!POSREPORT
		 M!POSREPORT shall cause ATC!HASPOS

We recognized that reception of GPS signals by an air-
craft does not in fact cause it to transmit position reports
but instead enables them. We chose to accept this slight
misstatement instead of adding the complexity of time-
based events to the proof.

Logically, we wanted to prove that given the behavior, the
air traffic controller would have the aircrafts’ positions:

		 AP!RECV → ATC!HASPOS

This would prove that the system could satisfy both SR1
(accuracy) and SR2 (timeliness) assuming that the

events were described correctly, •	
behavior specification was correct and no undocu-•	
mented conflicting behavior existed, and
implementation would not introduce any conflicting •	
behavior.

We would challenge these assumptions later when build-
ing the informal inner arguments.

We constructed the following proof using propositional
logic because we felt that this form of proof would be easier
to explain to the project participants:

	 1. 	AP!RECV → AP!XMIT 	 (premise: AP!RECV
	 shall cause AP!
	 MIT)

	 2. 	AP!XMIT → R!SEND 	 (premise: AP!XMIT
	 shall cause R!SEND)

By constructing the formal outer
argument, we determined which
behavior assumptions were
important to security.

Rese arch Fe ature

computer	52

Figure 3. Argument for AP!RECV → AP!XMIT.

	 3. 	R!SEND → M!POSREPORT 	 (premise: R!SEND
	 shall cause
	 M!POSREPORT)

	 4. 	M!POSREPORT → ATC!HASPOS 	 (premise:
	 M!POSREPORT shall
	 cause ATC!HASPOS)

	 5. 	AP!RECV 	 (assumption)
	 6. 	AP!XMIT 	 (detach, 1, 5)
	 7. 	R!SEND 	 (detach, 2, 6)
	 8. 	M!POSREPORT 	 (detach, 3, 7)
	 9. 	ATC!HASPOS 	 (detach, 4, 8)

“Premise” refers to implications derived from the behav-
ior specification, and “detach” refers to the application of
logical deduction to the two premises indicated (modus
ponens). Further details of the proof’s construction are
beyond the scope of this article.

Inner arguments. Steps 1 through 5 of the outer
argument must hold for the system to be secure.
The purpose of inner arguments is to challenge such
assumptions—to establish whether or not they hold in
the real world.

We represent inner arguments using a variant of
Toulmin’s argumentation diagrams,13 although other ar-
gumentation representations such as those proposed by
T.P. Kelly14 are available. The general form of a Toulmin-
based argument is: grounds, justified by warrants, lead to
claim, except when rebuttals. The claim is the argument’s
conclusion. Grounds are assumptions or evidence used to
support the claim. Warrants are connections that justify
the use of the grounds, and rebuttals are cases where as-
serting the claim would not be justified.

We first diagrammed an argument to support one of
the claims, then tried to find rebuttals, or reasons why the
argument might not hold. Figure 3 shows the argument
for the first claim, AP!RECV → AP!XMIT, along with three

rebuttals. The text in parentheses—for example, SR2—is
the security requirement that the rebuttal violates. Other
figures, not included here, showed the arguments for prem-
ises 2 through 4 (numbers of the lines in the proof) and for
the assumption (line 5). In all, there were 12 rebuttals in
the arguments, three of which are shown in Figure 3: R1.1,
R1.2, and R1.3.

These rebuttals fall into two general categories:
sabotage of equipment (R1.1, R1.2), and the intentional
transmission of incorrect data (R1.3). We evaluated each
one to determine whether it should be mitigated, and if so
how. Mitigating a rebuttal requires an iteration within the
framework. In this project, we felt that R1.3, aircraft mis-
representing their positions, presented an unacceptable
risk of accident or terrorism. We mitigated R1.3 by adding
multilateration, a function that computes a transmitter’s
position to verify that the aircraft is near to where it says
it is. We then subjected the new context to another itera-
tion and found rebuttals to the mitigation; a determined
attacker could use specially timed transmissions to con-
fuse multilateration. We considered several mitigations
to this new rebuttal.

Lessons Learned

Several lessons about security requirements engi-
neering emerged directly from our experiences in ATC
development. They appear to be more widely applicable,
although evidence for this is limited to examples of apply-
ing our framework on a smaller scale.

Exploit the experts. Identifying security requirements
requires a combination of the application of established
security engineering practices with deep analysis of the
problem domain in which security problems may arise.
Our experience suggests that domain knowledge is essen-
tial to understanding the subtleties of the security threats
and to address their often very technical nature. Indeed,
what distinguished our research from similar work4 was
the addition of such domain expertise to our team.

Exploit the nonexperts. While domain knowledge and
expertise are essential for security requirements analysis,
experts can often neglect to question assumptions. In fact,
we found that it was easy for domain experts to implic-
itly assume that something behaves in a certain manner
because that is how it has always behaved. Domain nonex-
perts have helped us on projects by asking crucial “why?”
questions at unexpected times. Of course, once they asked
the questions, a chain of arguments ensued.

Scope the problem. Security problems expand the
system context in unexpected ways. For example, the
buildings in a city are usually not part of an ATC problem
until considering whether an aircraft may fly into one;
neither are GPS satellite signals, until GPS jammers are
considered. The challenge we faced was to expand the
context as much as necessary, but no more than that.

Received GPS
positions are

accurate

Accurate
positions are
transmitted

Calculations
are accurate

Grounds

Warrants

Claim

R1.1: Aircraft’s GPS sabotaged (SR2)

R1.2: ADS-B transmitter sabotaged (SR2)

R1.3: Aircrew transmits wrong position/ID (SR1)

Rebuttals

53SEPTEMBER 2009

Issues of problem definition and scoping are well known
to RE practitioners and a welcome addition to security
analysts.

Iterate to mitigate. Eliciting requirements is often
regarded as an activity undertaken early in the develop-
ment life cycle—not so for a security engineering life
cycle. Robust security requirements evolve iteratively
as analysts consider mitigations. However, iteration
requires careful management to ensure the detection of
interactions. We found that the choice to represent miti-
gations in the context of their rebuttals led naturally to
considering them one at a time, when in fact they should
be considered together as part of a complete analysis.
For example, it makes sense to consider all the jamming
scenarios together—for example, ADS-B, clock sync, and

GPS jamming—instead of considering them independ-
ently. The composition of local analyses to obtain a more
complete analysis remains an open and challenging
question, although iteration can sometimes help.

Formalize but argue informally too. Formalization of
security requirements and their satisfaction arguments
clearly facilitated our analysis. However, we also found
that formal (outer) arguments were difficult to construct
and explain. One problem was the nature of the proof.
The outer argument proves that if the assumptions are
valid, the behavior specification is correct, and there are
no other behaviors, then the system can be secure. The
informal inner arguments help demonstrate the truth of
the series of ifs. Security is often as much about being
persuaded “beyond reasonable doubt” that a system

Further Reading

T here is increasing recognition of the importance and role
of security requirements. Explicit consideration of secu-

rity requirements has traditionally fallen in the general areas
of risk and threat assessment.1,2 The Common Criteria3 man-
date the consideration of security requirements explicitly,
while recent security methodologies4-6 provide frameworks
within which to do so.

Researchers have used abuse cases7 and misuse cases8 to elicit
scenarios describing potentially malicious usage of systems,
while other more formal techniques used to check security
properties automatically assume a detailed specification is
available.9 Ross Anderson advocates combining human effort
to identify system vulnerabilities.10

Our work falls within what Jeannette Wing11 calls application-
layer security. This includes research examining the social,12
organizational,13,14 and technical15 subversion of stakeholder
goals. John Viega and Gary McGraw first advocated the
explicit introduction of trust assumptions during security
analysis.16

References
	 1.	 T.R. Peltier, Information Security Risk Analysis, 2nd ed., Auer-

bach, 2005.
	 2.	 F. Swiderski and W. Snyder, Threat Modeling, Microsoft Press,

2004.
	 3.	 Common Criteria sponsoring organizations, “Common Crite-

ria for Information Technology Security Evaluation, Part 3:
Security Assurance Components,” v3.1, rev. 2, CCMB-2007-09-
003, Sept. 2007, NIST; www.commoncriteriaportal.org/files/
ccfiles/CCPART3V3.1R2.pdf.

	 4.	 D.G. Firesmith, “Common Concepts Underlying Safety, Secu-
rity, and Survivability Engineering,” tech. report CMU/
SEI-2003-TN-033, Software Eng. Inst., Carnegie Mellon Univ.,
2003.

	 5.	 N.R. Mead, E.D. Hough, and T.R. Stehney II, “Security Quality
Requirements Engineering (SQUARE) Methodology,” tech.
report CMU/SEI-2005-TR-009, Software Eng. Inst., Carnegie
Mellon Univ., 2005.

	 6.	 S.T. Redwine Jr., ed., “Software Assurance: A Guide to the
Common Body of Knowledge to Produce, Acquire, and Sus-

tain Secure Software,” v1.05.245, 15 Aug. 2006, Dept. of
Homeland Security.

	 7.	 J. McDermott and C. Fox, “Using Abuse Case Models for Secu-
rity Requirements Analysis,” Proc. 15th Ann. Computer
Security Applications Conf. (ACSAC 99), IEEE CS Press, 1999,
pp. 55-64.

	 8.	 I. Alexander, “Misuse Cases: Use Cases with Hostile Intent,”
IEEE Software, Jan./Feb. 2003, pp. 58-66.

	 9.	 C.L. Heitmeyer, “Applying ‘Practical’ Formal Methods to the
Specification and Analysis of Security Properties,” Proc. Int’l
Workshop Information Assurance in Computer Networks: Meth-
ods, Models, and Architectures for Network Security (MMM-ACNS
01), LNCS 2052, Springer-Verlag, 2001, pp. 84-89.

	10.	 R. Anderson, “How to Cheat at the Lottery (or, Massively Paral-
lel Requirements Engineering),” Proc. 15th Ann. Computer
Security Applications Conf. (ACSAC 99), IEEE CS Press, 1999;
www.cl.cam.ac.uk/~rja14/lottery/lottery.html.

	11.	 J.M. Wing, “A Symbiotic Relationship between Formal Meth-
ods and Security,” Proc. Conf. Computer Security, Dependability,
and Assurance: From Needs to Solutions (CSDA 98), IEEE CS
Press, 1998, pp. 26-38.

	12.	 L. Liu, E. Yu, and J. Mylopoulos, “Security and Privacy Require-
ments Analysis within a Social Setting,” Proc. 11th IEEE Int’l
Conf. Requirements Eng. (RE 03), IEEE CS Press, 2003, pp. 151-
161.

	13. 	R. Crook, D. Ince, and B. Nuseibeh, “On Modelling Access Poli-
cies: Relating Roles to Their Organisational Context,” Proc.
13th IEEE Int’l Conf. Requirements Eng. (RE 05), IEEE CS Press,
2005, pp. 157-166.

	14. 	P. Giorgini et al., “Modeling Security Requirements through
Ownership, Permission and Delegation,” Proc. 13th IEEE Int’l
Conf. Requirements Eng. (RE 05), IEEE CS Press, 2005, pp. 167-
176.

	15. 	R. De Landtsheer and A. van Lamsweerde, “Reasoning about
Confidentiality at Requirements Engineering Time,” Proc. 10th
European Software Eng. Conf./13th ACM SIGSOFT Int’l Symp.
Foundations of Software Eng. (ESEC-FSE 05), ACM Press, 2005,
pp. 41-49.

	16. 	J. Viega and G. McGraw, Building Secure Software: How to Avoid
Security Problems the Right Way, Addison-Wesley Professional,
2001.

Rese arch Fe ature

computer	54

	 9. 	 B. Nuseibeh, “Weaving Together Requirements and Archi-
tectures,” Computer, Mar. 2001, pp. 115-117.

	10.	 C. Foster and M. Watson, “CRISTAL UK—Final Project
Report,” report no. EN-CRISTAL-UK/WP0/FPR/D1.1, 19 Oct.
2007, Eurocontrol; www.eurocontrol.int/cascade/public/
site_preferences/display_library_list_public.html.

	11. 	 M. Jackson, Problem Frames: Analysing and Structuring
Software Development Problems, Addison-Wesley/ACM
Press, 2001.

	12.	 J. Moffett et al., “A Model for a Causal Logic for Require-
ments Engineering,” Requirements Eng., Mar. 1996, pp.
27-46.

	13.	 S. Toulmin, The Uses of Argument, updated ed., Cambridge
Univ. Press, 2003.

	14.	 T.P. Kelly, “Arguing Safety—A Systematic Approach to
Safety Case Management,” doctoral dissertation, Univer-
sity of York, 1999.

	15.	 A. van Lamsweerde, “Elaborating Security Requirements
by Construction of Intentional Anti-Models,” Proc. 26th
Int’l Conf. Software Eng. (ICSE 04), IEEE CS Press, 2004, pp.
148-157.

	16.	 I.A. Tøndel, M.G. Jaatun, and P.H. Meland, “Security Re-
quirements for the Rest of Us: A Survey,” IEEE Software,
Jan./Feb. 2008, pp. 20-27.

	17.	 G. Sindre and A.L. Opdahl, “Eliciting Security Require-
ments by Misuse Cases,” Proc. 37th Int’l Conf. Technology
of Object-Oriented Languages and Systems (TOOLS-Pacific
00), IEEE CS Press, 2000, pp. 120-131.

Bashar Nuseibeh is a professor of computing at the Open
University, Milton Keynes, UK. His research interests are
in requirements engineering and design, software process
modeling and technology, and technology transfer. Nuseibeh
received a PhD in software engineering from Imperial Col-
lege London. He is an Automated Software Engineering
Fellow and a Fellow of the British Computer Society and the
Institution of Engineering and Technology. Contact him at
b.nuseibeh@open.ac.uk.

Charles B. Haley is a lecturer at the Open University. His
research is on the representation of security requirements
and their validation through formal and informal argu-
mentation. Haley received a PhD in security requirements
from the Open University. Contact him at c.b.haley@open.
ac.uk.

Craig Foster is a senior systems engineer in the Communi-
cations, Navigation & Surveillance Research Team at NATS,
where he manages the portfolio of research projects in the
surveillance domain. Foster was project manager of the
CRISTAL UK project for the Eurocontrol CASCADE Pro-
gramme. He received an MSci in mathematics from Imperial
College London. Contact him at craig.foster@nats.co.uk.

is secure than it is about a proof of security, whatever
that means.

A
n important motivator for engaging in security
requirements engineering is to discover and
articulate security requirements early during
development, before substantial investment in
design and implementation. Security require-

ments are often elicited directly from stakeholders, which
inevitably increases the likelihood of identifying and
protecting their most relevant assets. This is an area of
increasingly active research,15,16 although some of the more
popular approaches, such as misuse cases17 and threat
trees,1 still assume the existence of “a system” and some
known system behavior. The “Further Reading” sidebar
highlights classic and recent research on the importance
and role of security requirements.

Comprehensive tool support is urgently needed to
more easily construct arguments and to better represent
and communicate them to people with varied capabili-
ties at handling formality. Of course, articulating clear
security requirements and robust satisfaction arguments
may be insufficient to achieve the desired level of se-
curity. A faulty specification or implementation of the
security requirements can introduce security vulner-
abilities. Further research is needed to better understand
the relationships between security requirements and
designs to mitigate against the exploitation of such vul-
nerabilities.

References
	 1.	 B. Schneier, Secrets and Lies: Digital Security in a Networked

World, Wiley, 2000.

	 2.	 R. Crook et al., “Security Requirements Engineering: When
Anti-Requirements Hit the Fan,” Proc. 10th Anniversary
IEEE Joint Int’l Conf. Requirements Eng. (RE 02), IEEE CS
Press, 2002, pp. 203-205.

	 3.	 A.I. Antón, ed., special issue on “Requirements Engineer-
ing for Information Security,” Requirements Eng., Dec.
2002, pp. 177-287.

	 4.	 C.B. Haley et al., “Security Requirements Engineering: A
Framework for Representation and Analysis,” IEEE Trans.
Software Eng., Jan. 2008, pp. 133-153.

	 5.	 B. Nuseibeh and S. Easterbrook, “Requirements Engineer-
ing: A Roadmap,” Proc. Conf. Future of Software Eng. (FOSE
00), ACM Press, 2000, pp. 35-46.	

	 6.	 P.T. Devanbu and S. Stubblebine, “Software Engineering
for Security: A Roadmap,” Proc. Conf. Future of Software
Eng. (FOSE 00), ACM Press, 2000, pp. 227-239.

	 7.	 M. Glinz, “On Non-Functional Requirements,” Proc. 15th
IEEE Int’l Requirements Eng. Conf. (RE 07), IEEE CS Press,
2007, pp. 21-26.

	 8.	 D. MacKenzie, Mechanizing Proof: Computing, Risk, and
Trust, MIT Press, 2001.

