
A Framework for Security Requirements Engineering
Charles B. Haley
The Open University

Walton Hall
Milton Keynes UK

c.b.haley [at] open.ac.uk

Jonathan D. Moffett
The Open University

Walton Hall
Milton Keynes UK

j.moffett [at] open.ac.uk

Robin Laney
The Open University

Walton Hall
Milton Keynes UK

r.c.laney [at] open.ac.uk

Bashar Nuseibeh
The Open University

Walton Hall
Milton Keynes UK

b.nuseibeh [at] open.ac.uk

ABSTRACT
This paper presents a framework for security requirements
elicitation and analysis, based upon the construction of a context
for the system and satisfaction arguments for the security of the
system. One starts with enumeration of security goals based on
assets in the system. These goals are used to derive security
requirements in the form of constraints. The system context is
described using a problem-centered notation, then this context is
validated against the security requirements through construction
of a satisfaction argument. The satisfaction argument is in two
parts: a formal argument that the system can meet its security
requirements, and a structured informal argument supporting the
assumptions expressed in the formal argument. The construction
of the satisfaction argument may fail, revealing either that the
security requirement cannot be satisfied in the context, or that the
context does not contain sufficient information to develop the
argument. In this case, designers and architects are asked to
provide additional design information to resolve the problems.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications.

General Terms
Documentation, Security, Verification.

Keywords
Requirements Engineering, Security Requirements

1. INTRODUCTION
Security is about the prevention of harm caused by the actions of
attackers. Attackers are people who gain by exploiting system
failures, intentionally or accidentally provoked. This gain usually
results in some harm to the system owner. The attacker
manipulates some object in the system during an attack, to
harmful effect. Objects so manipulated have value (the inverse of
the harm) that must be protected.

Security goals arise when stakeholders establish that objects in the
context of the system, be they tangible (e.g. cash) or intangible
(e.g. information), have direct or indirect value that the

stakeholders wish to preserve. The value is direct when the object
has an intrinsic value, almost regardless of context. The value is
indirect when the value arises because of the context in which the
object rests. Objects with direct or indirect value are called assets
[13], and the stakeholders naturally wish to protect themselves
from any harm that might come from abuse of these assets. For
example, tangible assets might be destroyed, stolen, or modified;
in this case, the harm is the loss of the asset itself (direct value).
Information assets might be destroyed, revealed, or modified; the
harm could be the loss or modification of the asset (direct value)
or the consequences of exposing the asset (indirect value).
Security requirements operationalize security goals, describing
conditions under which the possibility of intentionally caused
harm is reduced to an acceptable level.

This paper is about security requirements, and is targeted at
readers interested in early security analysis. There are three
contributions. The first is definition: what security requirements
are. The second is explicit inclusion of context: the world within
which the system and the potential attackers rest. The third is
determining satisfaction: whether the system can satisfy the
security requirements. The paper can be thought of as a prequel to
[11], which first presented our security satisfaction arguments,
along with examples.

2. RELATED WORK
This section looks at related work on how security requirements
are defined and represented.

2.1 Security Requirements as Security
Functions

It is common to express security requirements by describing the
security mechanisms to be used. For example, ISO 15408 [13-15],
the ISO version of the Common Criteria, provides examples of
security requirements of the general form “The […] Security
Function (TSF) shall explicitly deny access of subjects to objects
based on the [rules …]” [14], where “rules” appear to be a
mechanism. Regarding encryption, one finds “The TSF shall
distribute cryptographic keys in accordance with a [specified
cryptographic key distribution method] that meets the following:
[list of standards]” [14]. Again, a mechanism is being described.
In addition, both examples say what the function is to do, not why
it is to do it.

The NIST Computer Security Handbook states that “These
[security] requirements can be expressed as technical features
(e.g., access controls), assurances (e.g., background checks for
system developers), or operational practices (e.g., awareness and
training)” [23], in effect defining security requirements in terms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SESS’06, May 20–21, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

35

of functions and practices. Other security guides imply that
recommendations such as “Acquire Firewall Hardware and
Software” (e.g. [2]) are requirements.

Defining requirements in terms of function leaves out key
information: what objects need protecting and, more importantly,
why the objects need protecting. Although both the ISO and NIST
documents say that the underlying reasons why objects are to be
protected come from the functionality of the system, they provide
little guidance on how to connect the functionality to the security
needs. Instead of describing when and why objects are to be
protected, they describe how the objects are to be protected.

2.2 Security Requirements as NFRs
Devanbu & Stubblebine [7] remark that security requirements are
a kind of non-functional requirement. Kotonya and Sommerville
[17], when discussing non-functional requirements, in which they
include security, define them as "restrictions or constraints" on
system services; similar definitions can be found in other text
books. Rushby [26] appears to take a similar view, stating
"security requirements mostly concern what must not happen".
Using the Tropos methodology, Mouratidis et al [22] state that
"security constraints define the system’s security requirements".

Firesmith in [8] defines security requirements as “a quality
requirement that specifies a required amount of security […] in
terms of a system-specific criterion and a minimum level […] that
is necessary to meet one or more security policies.” This appears
to be a form of constraint, an impression reinforced by an
example he provides: “The [application] shall protect the buyer-
related data […] it transmits from corruption […] due to
unsophisticated attack [when] […] Buyer Buys Item at Direct
Sale [to a level of] 99.99%.”

The problem with these definitions is their lack of specificity and
guidance for the designers. What “system services” are being
constrained? What is the constraint, and what effect will it have
on the functionality of the system? How does one validate the
system against any eventual chosen constraint to ensure that it
accurately reflects the stakeholders’ wishes? Referring to
Firesmith’s example, what is an “unsophisticated attack?” What
does the measure “99.99%” mean? It could mean that if 10,000
attacks are known, the developers can ignore one. Alternatively, it
could be a way of saying “all” without actually saying it.

One major problem with percentage-style quantification of
security requirements is the binary nature of the majority of
security attacks; in most cases, an attack works or it does not. If
an attack does not work the first time, it probably will not work
the second time unless the parameters of the attack are changed.
On the other hand, if the attack works once (the system is
penetrated), then the attack will likely continue working until the
vulnerability is removed. The result is that successful attacks can
(usually) be repeated as often as the attacker wishes, and even
shared amongst attackers. It is difficult to know what use to make
of the percentage quantification in these cases.

2.3 Other Portrayals of Security
Requirements

Many authors implicitly assume that security requirements are
identical to high-level security goals. Tettero [29] is explicit about

this, defining security requirements as the confidentiality,
integrity, and availability of the entity for which protection is
needed. While this is a clear definition, in some cases it may not
result in precise enough requirements. Consider an example in
health care: both doctors and administrators would probably agree
on the importance of confidentiality, integrity, and availability of
the clinical information, but they could disagree on the concrete
security requirements that express those goals. The requirements
need to be more explicit about who can do what, when.

Some authors identify security requirements with security
policies. Devanbu & Stubblebine [7] define a security
requirement as "a manifestation of a high-level organizational
policy into the detailed requirements of a specific system. […
We] loosely (ab)use the term 'security policy' […] to refer to both
'policy' and 'requirement'". Anderson [3] is less direct; he states
that a security policy is "a document that expresses […] what […]
protection mechanisms are to achieve" and that "the process of
developing a security policy […] is the process of requirements
engineering". The difficulty with security policies is their
chameleon-like meaning. The term can be used for anything from
a high-level aspiration to an implementation. Therefore, without
accompanying detailed explanation, it is not satisfactory to define
security requirements as security policies.

Lee et al [19] point out the importance of considering security
requirements in the development life cycle, but do not define
them. Heitmeyer [12] shows how the SCR method can be used to
specify and analyze security properties, without giving the criteria
for distinguishing them from other system properties.

A number of papers have focused on security requirements by
describing how they may be violated. For example, McDermott &
Fox [21], followed independently by Sindre & Opdahl [27] and
elaborated by Alexander [1], describe abuse and misuse cases,
extending the use case paradigm to undesired behavior. Liu, Yu &
Mylopoulos [20] describe a method of analyzing possible illicit
use of a system, but omit the important initial step of identifying
the security requirements of the system before attempting to
identify their violations. One could argue that Chivers and
Fletcher [6] fall into this camp with SeDAn, as they focus on
attackers and the paths they might take into a system. The
problem with these approaches is that they indicate what a system
is not to do in specific situations, but not in the general case.

van Lamsweerde [18] describes a process by which security goals
are made precise and refined until reaching security requirements.
Antón & Earp [4] use the GBRAM method to operationalize
security goals for the generation of security policies and
requirements, but do not define security requirements.

3. THE FRAMEWORK
The review in Section 2 exposed several problem areas: multiple
definitions of security requirements, inconsistent and difficult to
understand satisfaction criteria, and a general lack of a clear
pathway for deriving security requirements from business goals.
The security requirements framework described in this paper
addresses these problems, facilitating an understanding of the
elicitation, validation, and verification of security requirements
and other artifacts by integrating the concepts of the two
disciplines of requirements engineering and security engineering.
From requirements engineering it takes the concept of functional

36

goals, which are operationalized into functional requirements
while applying appropriate constraints. From security engineering
it takes the concept of assets, together with threats of harm to
those assets. In the framework:

• Security goals aim to protect assets from harm.

• Security goals are operationalized into security requirements,
which take the form of a set of constraints on the functional
requirements sufficient to protect the assets from the harms
identified previously. Security requirements are, consequently,
preventative.

• Feasible realizations of the security requirements may lead to
the need for the addition of secondary security goals, which
will (eventually) manifest themselves as additional functional
and/or security requirements. Secondary security goals may call
for detective or preventative measures, a possibility which is
discussed further below.

• Security satisfaction arguments show that the system can
respect the security requirements.

The framework was developed in order to understand the place of
security requirements within the development of an individual
application, along with the relationships between the security
requirements and other artifacts produced during development.

3.1 Definition of Security Goals
The security community has enumerated some general security
concerns, labeling them with the acronym CIA, and more recently
another A ([25] and other security textbooks): confidentiality,
integrity, accessibility, and accountability. By connecting these
general concerns to the assets implicated in a system, and then
postulating actions that would violate these concerns, one can
construct descriptions of possible threats on assets. These threat
descriptions [10] are phrases of the form performing action X
on/to/with asset Y could cause harm Z. Threat descriptions permit
a form of asset-centered threat modeling, and are represented by a
three-element tuple: the asset, the action that will exploit the
asset, and the subsequent harm. Threat descriptions are generated
by enumerating the assets involved in the system, then for each
asset, listing the actions that exploit the asset to cause direct or
indirect harm. For example, one can imagine erasing (the action)
the customer records (the asset) of a company to cause loss of
revenue (the harm). Security goals are found by applying prevent
(also called avoid) to threat descriptions.

More security goals can be found by combining management
control principles and application business goals. Management
control principles include ‘standard’ security principles such as
least privilege and separation of duties. Application business
goals will determine the applicability of management control
principles to the system, for example by defining those privileges
that are needed for the application, and excluding those that are
not. Security goals found in this way have a form similar to
“signatures of two separate people will be required for any
expenditure over £1000” and “privilege to perform operation X
shall not imply privilege to perform operation Y”.

Note that other legitimate stakeholders may have conflicting
security goals. The set of relevant security goals may be mutually
inconsistent, and inconsistencies will need to be resolved during

the goal analysis process before a set of consistent requirements
can be reached.

The goals of attackers could be useful when determining security
goals for the system, for example when enumerating assets or
quantifying harm. However, the goals of the system owner and
other legitimate stakeholders are not directly related to the goals
of attackers, because security is not a zero sum game like football.
In football, the goals won by an attacker are exactly the goals lost
by the defender. Security is different; there is no exact
equivalence between the losses incurred by the asset owner and
the gains of the attacker. To see this, look at two examples:

• Robert Morris unleashed the Internet Worm [28], causing
millions of dollars of damage, apparently as an experiment
without serious malicious intent. The positive value to Morris
was much less than the loss incurred by the attacked sites.

• Many virus writers today are prepared to expend huge effort in
writing a still more ingenious virus, which may cause little
damage (screen message "You've got a Virus"). Generally,
there is no simple relationship between the gains of a virus
writer and the losses incurred by those who are attacked.

The consequences of security not being a zero sum game are
twofold: The first is that the evaluation of possible harm to an
asset can generally be carried out without reference to particular
attackers; one needs only to determine that harm can be incurred.
The second is that the goals of attackers cannot be solely used to
arrive at the goals of a defender to prevent harm, i.e. their security
goals; further consideration is necessary to determine whether and
what harm is incurred if the attacker satisfies his or her goals.

3.2 Definition of Security Requirements
We define security requirements as constraints on the functions of
the system, where these constraints operationalize one or more
security goals.

Security requirements operationalize the security goals as follows:

• They are constraints on the system's functional requirements,
rather than themselves being functional requirements. As
constraints, they are preventative measures.

• They express the system's security goals in operational terms,
precise enough to be given to a designer/architect. Security
requirements, like functional requirements, are prescriptive,
providing a specification (behavior in terms of phenomena) to
achieve the desired effect.

3.3 From Security Goals to Security
Requirements

There are two related sets of security goals and security
requirements. The first, the primary goals and requirements, are
those derived from the business goals and functional
requirements. These goals and requirements are primary in the
sense that if the resulting system will respect the primary security
requirements, then the system will satisfy the primary security
goal(s).

Secondary security goals are additional goals that are added for
one or both of the following reasons: 1) to enable construction of
an acceptable satisfaction argument for the satisfaction of primary

37

security requirements, or 2) to permit an acceptable feasible
realization of the primary security requirements. Satisfaction
arguments are discussed later in this paper.

The term feasible realization takes into consideration both
technical feasibility and cost/benefit plus risk. In some cases,
there may be no known way to respect a constraint and thereby
prevent the harm; destroying a computer room with an atomic
explosion comes to mind. In other cases, risk analysis might
indicate that the cost of respecting a security requirement is
excessive. In these cases, the analyst may decide to detect
violation after the fact, and then both recover from and repair the
breach. Availability requirements are a good example - many
such requirements do not prevent loss of availability, but instead
imply a recovery capability. Analysis of the secondary security
goals may lead to the addition of secondary security requirements.
This is, of course, a recursive process.

Secondary security goals and security requirements are not
secondary in terms of importance, but are instead secondary
because they exist to enable satisfaction (to an acceptable level)
of hierarchically superior security requirements.

It is very important to note that adding secondary security goals
and requirements can supersede the primary security requirement,

and can change the context and behavior of the system. For
example, choosing to use attack detection instead of prevention
implies that the primary security requirement will not be directly
satisfied, as the attack will not be prevented. The choice means
that the detection goals (and associated security requirements)
are considered suitably equivalent; they ‘cover’ and ‘replace’
(but do not delete) the primary security requirement. The same
choice, use detection instead of prevention, could also change the
behavior specification of the system because of the addition of
domains and phenomena to facilitate detection.

3.4 Security Requirements and Context
It is important to reiterate that security requirements are applied
in the context within which the system operates, which is larger
than the software. A security requirement can be realized in
multiple ways, some completely outside the software to be
constructed.

We use a variant of Jackson’s problem frames [16] to represent
the system context; see [11] for examples.

3.5 Development Artifacts and Dependencies
All system development processes have recognizable stages that
produce artifacts that are successively closer representations of a
working system. These representations are core artifacts. They
are ordered in an abstraction hierarchy, progressing from the
most abstract to the final concrete working system. At early
stages, core artifacts are typically documents or prototypes. The
final core artifact is the working system itself, consisting of a
combination of physical and software items.

Support artifacts are artifacts that help to develop, analyze, or
justify the design of a core artifact. They may include formal
analysis, informal argument, calculation, example or counter-
example, etc. They are by-products of processes whose aim is to
help produce verified and valid core artifacts.

Two sets of core artifacts are of most interest to this paper. On
the mainstream requirements engineering side, one finds
descriptions of goals, requirements, and the system (in the large)
context/architecture. On the security engineering side, one finds
assets, threats and control principles.

Dependencies between Artifacts. In a hierarchy of artifacts, there
are dependencies between the artifacts. For example, an
operationalized requirement is dependent upon a higher-level goal
from which it has been derived, because alteration of the goal
may cause alteration of the requirement. This kind of dependency
is called hierarchical dependency.

There is also a reverse kind of dependency: feasibility. If it proves
impossible to implement a system that sufficiently satisfies a
requirements specification, then this will force a change in the
goals or requirements. The higher-level artifact is dependent on
the feasibility of the artifacts below it in the hierarchy.

These dependency relationships have an important implication for
the structure of development processes. If an artifact is dependent
upon the implementation of another artifact for its feasibility, then
if the implementation is not feasible, there must be an iteration
path in the process back to the ancestor from its descendant.

[Not
feasible]

Elicit/Revise Application
Business Goals & Quality Goals

Elicit/Revise
Functional

Requirements

Identify/Revise &
Validate Security Goals

Elicit/Revise Assets

Elicit/Revise possible
Harm (threat descriptions)

Validate Security Goals
against Assets, Threats

and Business Goals

[Feasible]

[Not
OK]

[OK]

[Not
feasible]

Construct/Revise
Primary Security
Requirements

Validate Security
Requirements satisfy

Security Goals

[Feasible]

[OK]

Revise & Verify
System Context

Verify Security
Requirements can be

satisfied by System Context

[Feasible]

[OK]

[Not
OK]

[Not
OK]

[Not feasible]

Security
Validation/Verification

General System Activity

Security Activity
(Construct/Verify)

Determine Secondary
Security Goals/
Requirements

[Not
feasible]

[OK]

Functional
requirements

Select Security Control
Principles (e.g. LPP)

Secondary Security
Goals/Requirements

Construct
System
Context

[OK]

[Not
feasible]

[OK]

[OK]

[Not
feasible]

1

3

2

4

Two-part satisfaction
arguments built during

this step

Figure 1 – Process Activity Diagram

38

3.6 Activities in the Framework
An ordered set of activities for moving from functional goals to
satisfaction arguments is shown in Figure 1. Boxes in the figure
represent activities that produce artifacts. Typically, a box in the
figure has two exits, one for success, and one for failure. Failure
can be one of two kinds. The first is that it is not feasible to create
a consistent set of the artifacts to be constructed by that activity.
The second is that validation of the artifacts against a higher level
– such as validation of security requirements against security
goals – shows that they fail to meet their aims. For example, one
might be unable to construct a system context that is both
accepted by the stakeholders and permits derivation of functional
requirements from the functional goals. Alternatively, one might
fail to construct a satisfactory satisfaction argument. Iteration may
cascade upwards if the problem cannot be resolved at the
preceding step.

There are four general sections in the activity diagram. Although
one could describe these sections in terms of the artifacts that are
produced, along with the ordering between them, it is clearer to
describe them as activities that are to be incorporated into the
development process. The activities are 1) identify functional
requirements, 2) Identify security goals, 3) identify security
requirements, and 4) construct satisfaction arguments. We discuss
each in turn below.

3.6.1 Section 1: Identify Functional Requirements
The only requirement the framework places upon the
development process is that one output a representation of the
context. How the requirements engineer gets to this point is open.

3.6.2 Section 2: Identify Appropriate Security Goals
There are four general steps required to identify the security
goals: identify candidate assets, identify harms (generate threat
descriptions), apply management principles, then determine the
security goals. The result is a set of security goals, which are
validated by ensuring that the business goals remain satisfied.

The first iteration through this step results in the generation of
primary security goals. Subsequent iterations result in secondary
security goals, which are traceable, perhaps through multiple
levels and through security requirements, to the original, primary,
security goal(s).

3.6.2.1 Identify Candidate Assets
The goal of this step is to find all the objects in the system context
that might have value, direct or indirect. In general, assets consist
of all the information objects stored in or accessed by the system-
to-be and any tangible objects such as the computers themselves.
An object has direct value when the potential harm caused by a
threat is to the object itself. An object has indirect value when a
threat involving that asset causes harm somewhere else, such as to
revenue, to costs, or to reputation. An object can have both direct
and indirect value; when money is taken from a bank, the bank
loses both the money and its reputation.

One potential asset might contain, or enclose, other potential
assets. A good example is a database that contains individual
information assets. Another example is backup media, which can
contain any number of information assets.

3.6.2.2 Generate Threat Descriptions
In general, harm is caused by the negation of one or more of the
security concerns described in Section 3.1. For information assets,
these concerns are confidentiality, integrity, and availability. The
concerns are similar for tangible assets: exposure, modification,
and deprivation (theft or destruction). These concerns are used to
enumerate the threat descriptions. One asks questions of the form
“what harm could come from violating the [insert concern here]
of [insert asset here]?” Answers to these questions are threat
descriptions, which are represented as tuples of the form
{action, asset, harm}.

3.6.2.3 Apply Management Principles
The functions that the system is to provide must be compared to
the management principles that the organization wishes to apply.
These principles might include separation of duties, separation of
function, required audit trails, least privilege (both need to know
and need to do), Chinese wall, and data protection (not intended
to be an exhaustive list). The sector the system will run in may
have standard management principles, such as no outside
connections and no removable media. A list of security goals is
generated by checking the applicability of the management
principles to the assets and business goals of the system. The
result is a set of achieve goals with forms similar to “achieve
Separation of Duties when paying invoices” or “audit all uses of
account information.”

3.6.3 Step 3: Identify Security Requirements
Recall that we define security requirements as constraints on
functional requirements that are needed to satisfy applicable
security goals. Two operations are needed to establish which
goals are applicable to a functional requirement: determining
which assets are involved to find the threat descriptions that
apply, and settling on appropriate goals derived from management
principles. One finds which assets will be implicated in satisfying
a particular functional requirement by drawing the context for that
functional requirement as a problem diagram. The list of assets
implicated in the context leads to a list of threats descriptions that
must be mitigated. The list of assets and the function itself will
point at the management principle goals to apply. The security
requirements are these mitigations or achieve goals, constraining
the function in ways that will achieve the security goals.

A simple example of such a constraint is:
The system shall provide Personnel Information
only to members of Human Resources Dept.

The constraint ("only to …") is attached to the function
("provide Personnel Information"); it only makes sense in
the context of the function. One might also impose temporal
constraints:
The system shall provide Personnel Information
only during normal office hours;

and complex constraints on traces:
The system shall provide information about an
organization only to any person who has not
previously accessed information about a
competitor organization (the Chinese Wall
Security Policy, [5]).

39

Availability requirements will need to express constraints on
response time:
The system shall provide Personnel Information
within 1 hour for 99% of requests.

Note that this differs only in magnitude from a Response Time
quality goal, which might use the same format to require a sub-
second response time.

In the same way as security goals, the first iteration through this
step results in the generation of primary security requirements.
Subsequent iterations generate secondary security requirements.

3.6.4 Step 4: Validation of System Context
A key verification step for the framework described in this paper
is the ability to show that the system can satisfy the security
requirements. We propose the use of structured informal and
formal argumentation for this verification step: to convince a
reader that a system can satisfy the security requirements laid
upon it. These arguments, called satisfaction arguments and
discussed more completely in [11], are in two parts. The first part
of the argument consists of a formal argument to prove that a
system can satisfy its security requirements, drawing upon claims
about the behavior and properties of domains in a system. The
claims about behavior of the domains are trust assumptions [9].
The second part of the argument consists of structured informal
arguments to support the trust assumptions about system behavior
and characteristics made in the formal argument. Building on our
understanding of security requirements, the satisfaction arguments
assist with identifying security-relevant system properties, and
determining how inconsistent and implausible assumptions about
them affect the security of a system.

3.7 Iteration
One reason that an analyst may fail to construct a convincing
satisfaction argument is that there is not enough information
available to justify the using a trust assumption. For example, to
justify a claim that users are authenticated, there must be some
phenomena exchanged between the user and the rest of the
system. The choice of phenomena and behavior is a design
decision that may have a significant impact on the system
architecture and context. For example, it is possible that
architectural choices may have already been made and are being
imposed. For these reasons, the framework assumes that the
process includes Twin Peaks iterations [24], asking the designers
to add more detail into the system context so that claims can be
justified. These iterations move from step four to steps one and
two.

The details added during a Twin Peaks iteration may well require
new functions, thus functional requirements. Consider a system
where to satisfy a confidentiality requirement, designers choose
authentication. Further assume that the designers choose a retinal-
scanning authentication technique. Appropriate domains and
behavior are added to the context to describe how authentication
takes place from the point of view of the user (in problem space).
However, one cannot necessarily stop at the addition of domains
and phenomena. The authentication system may need to be
managed. New assets may have been added to the system; for
example the retina description information. New domains have
been added: for example the administrators. The process would

then restart in step 1 with a re-analysis of the functional
requirements so that the consequences of the new goal are
understood. New assets (e.g. the authentication data) would be
found in step 2, and then new security goals to protect the assets
and new security requirements to constrain functional operations
wherever the new asset appears would be added.

Another possibility is that the Twin Peaks iteration will establish
that there is no feasible way to satisfy the security requirement(s).
In this case, the designers and the stakeholders must come to an
agreement on some acceptable alternative, such as a weaker
constraint, attack detection, and/or attack recovery. Appropriate
secondary security goals are added to the system, probably
resulting in new secondary security requirements. The resulting
secondary security goals and requirements ‘cover’ the ones that
were not feasible. Satisfying the new secondary goals and
requirements satisfies the original security goals and
requirements. Clearly the ‘secondariness’ of any functional goals
added must be remembered. If the hierarchically superior (‘more
primary’) security requirement is changed, then the secondary
security goals may need changing.

Lastly, it is possible that no feasible way to satisfy a security
requirement exists, and no agreement can be reached on
alternatives. In this case, one must return to the original business
and quality goals of the application, modifying the initial
conditions to change the assets implicated in the system, or the
security goals of the system. Alternatively, one might decide that
it is infeasible to build the system.

4. CONCLUSION
This paper has presented a framework for security requirements
engineering where a) asset and security goal analysis are done in
the business context of the system, b) the effects of security
requirements on the functional requirements are understood, c)
design constraints are taken into account, and d) the ‘correctness’
of security requirements is established through the use of
satisfaction arguments. The framework unifies our work on early
threat analysis [10], trust assumptions [9], and satisfaction
arguments [11].

As noted in the introduction, there are three contributions in this
paper. The first is definition: a coherent definition of what
security requirements are. The second is explicit recognition of
the importance of context: the world within which the system and
the potential attackers exist. The third is a structure for
satisfaction arguments for validating whether the system can
satisfy the security requirements.

Acknowledgements:
The authors wish to thank Michael Jackson for his continuous
involvement and support. Thanks also to Simon Buckingham
Shum for many helpful conversations about argumentation. The
financial support of the Leverhulme Trust and the Royal
Academy of Engineering is gratefully acknowledged, as is EU
support of the ELeGI project, number IST-002205.

References:
[1] Alexander, I.: Misuse Cases in Systems Engineering.

Computing and Control Engineering Journal, 14(1) (Feb
2003), 40-45.

40

[2] Allen, J.H.: CERT System and Network Security Practices.
In Proceedings of the Fifth National Colloquium for
Information Systems Security Education (NCISSE'01),
George Mason University, Fairfax, VA USA, 22-24 May
2001.

[3] Anderson, R.: Security Engineering: A Guide to Building
Dependable Distributed Systems. 2001.

[4] Antón, A.I., Earp, J.B.: Strategies for Developing Policies
and Requirements for Secure E-Commerce Systems. In E-
Commerce Security and Privacy, vol. 2, Advances In
Information Security, A. K. Ghosh, Ed.: Kluwer Academic
Publishers, Jan 15 2001, pp. 29-46.

[5] Brewer, D.F.C., Nash, M.J.: The Chinese Wall security
policy. In Proceedings of the 1989 IEEE Symposium on
Security and Privacy, Oakland, CA USA: IEEE Computer
Society Press, 1-3 May 1989, pp. 206 - 214.

[6] Chivers, H., Fletcher, M.: Applying Security Design
Analysis to a service-based system. Software: Practice and
Experience, 35(9) (2005), 873-897.

[7] Devanbu, P., Stubblebine, S.: Software Engineering for
Security: A Roadmap. In The Future of Software
Engineering, A. Finkelstein, Ed.: ACM Press, 2000.

[8] Firesmith, D.: Specifying Reusable Security Requirements.
Journal of Object Technology, 3(1) (Jan-Feb 2004), 61-75.

[9] Haley, C.B., Laney, R.C., Moffett, J.D., Nuseibeh, B.: Using
Trust Assumptions with Security Requirements.
Requirements Engineering Journal, 11(2) (April 2006), 138-
151.

[10] Haley, C.B., Laney, R.C., Nuseibeh, B.: Deriving Security
Requirements from Crosscutting Threat Descriptions. In
Proceedings of the Third International Conference on
Aspect-Oriented Software Development (AOSD'04),
Lancaster UK: ACM Press, 22-26 Mar 2004, pp. 112-121.

[11] Haley, C.B., Moffett, J.D., Laney, R., Nuseibeh, B.: Arguing
Security: Validating Security Requirements Using Structured
Argumentation. In Proceedings of the Third Symposium on
Requirements Engineering for Information Security
(SREIS'05) held in conjunction with the 13th International
Requirements Engineering Conference (RE'05), Paris France,
29 Aug 2005.

[12] Heitmeyer, C.L.: Applying 'Practical' Formal Methods to the
Specification and Analysis of Security Properties. In
Proceedings of the International Workshop on Information
Assurance in Computer Networks: Methods, Models, and
Architectures for Network Computer Security (MMM ACNS
2001), vol. 2052, St. Petersburg, Russia: Springer-Verlag
Heidelberg, 21-23 May 2001, pp. 84-89.

[13] ISO/IEC: Information Technology - Security Techniques -
Evaluation Criteria for IT Security - Part 1: Introduction and
General Model. International Standard 15408-1, ISO/IEC,
Geneva Switzerland, 1 Dec 1999.

[14] ISO/IEC: Information Technology - Security Techniques -
Evaluation Criteria for IT Security - Part 2: Security
Functional Requirements. International Standard 15408-2,
ISO/IEC, Geneva Switzerland, 1 Dec 1999.

[15] ISO/IEC: Information Technology - Security Techniques -
Evaluation Criteria for IT Security - Part 3: Security
Assurance Requirements. International Standard 15408-3,
ISO/IEC, Geneva Switzerland, 1 Dec 1999.

[16] Jackson, M.: Problem Frames. Addison Wesley, 2001.
[17] Kotonya, G., Sommerville, I.: Requirements Engineering:

Processes and Techniques. United Kingdom: John Wiley and
Sons, 1998.

[18] van Lamsweerde, A.: Elaborating Security Requirements by
Construction of Intentional Anti-Models. In Proceedings of
the 26th International Conference on Software Engineering
(ICSE'04), Edinburgh Scotland, 26-28 May 2004, pp. 148-
157.

[19] Lee, Y., Lee, J., Lee, Z.: Integrating Software Lifecycle
Process Standards with Security Engineering. Computers and
Security, 21(4) (2002), 345-355.

[20] Liu, L., Yu, E., Mylopoulos, J.: Security and Privacy
Requirements Analysis Within a Social Setting. In
Proceedings of the 11th IEEE International Requirements
Engineering Conference (RE'03), Monterey, CA USA, 8-12
Sept 2003, pp. 151-161.

[21] McDermott, J., Fox, C.: Using Abuse Case Models for
Security Requirements Analysis. In Proceedings of the 15th
Computer Security Applications Conference (ACSAC'99),
Phoenix, AZ USA: IEEE Computer Society Press, 6-10 Dec
1999, pp. 55-64.

[22] Mouratidis, H., Giorgini, P., Manson, G.: Integrating
Security and Systems Engineering: Towards the Modelling
of Secure Information Systems. In Proceedings of the 15th
Conference on Advanced Information Systems Engineering
(CAiSE'03), Klagenfurt/Velden Austria: Springer-Verlag, 16-
20 Jun 2003, pp. 63-78.

[23] NIST: An Introduction to Computer Security: The NIST
Handbook. Special Pub SP 800-12, National Institute of
Standards and Technology (NIST), Oct 1995.

[24] Nuseibeh, B.: Weaving Together Requirements and
Architectures. Computer (IEEE), 34(3) (Mar 2001), 115-117.

[25] Pfleeger, C.P., Pfleeger, S.L.: Security in Computing.
Prentice Hall, 2002.

[26] Rushby, J.: Security Requirements Specifications: How and
What? In Proceedings of the Symposium on Requirements
Engineering for Information Security (SREIS), Indianapolis,
IN USA, 5-6 Mar 2001.

[27] Sindre, G., Opdahl, A.L.: Eliciting Security Requirements by
Misuse Cases. In Proceedings of the 37th International
Conference on Technology of Object-Oriented Languages
and Systems (TOOLS-Pacific'00), Sydney Australia, 20-23
Nov 2000, pp. 120-131.

[28] Spafford, E.H.: The internet worm program: an analysis.
ACM SIGCOMM Computer Communication Review, 19(1)
(Jan 1989), 17-57.

[29] Tettero, O., Out, D.J., Franken, H.M., Schot, J.: Information
security embedded in the design of telematics systems.
Computers and Security, 16(2) (1997), 145-164.

41

