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ABSTRACT 
This paper presents a framework for security requirements 
elicitation and analysis, based upon the construction of a context 
for the system and satisfaction arguments for the security of the 
system. One starts with enumeration of security goals based on 
assets in the system. These goals are used to derive security 
requirements in the form of constraints. The system context is 
described using a problem-centered notation, then this context is 
validated against the security requirements through construction 
of a satisfaction argument. The satisfaction argument is in two 
parts: a formal argument that the system can meet its security 
requirements, and a structured informal argument supporting the 
assumptions expressed in the formal argument. The construction 
of the satisfaction argument may fail, revealing either that the 
security requirement cannot be satisfied in the context, or that the 
context does not contain sufficient information to develop the 
argument. In this case, designers and architects are asked to 
provide additional design information to resolve the problems. 

Categories and Subject Descriptors 
D.2.1 [Software Engineering]: Requirements/Specifications. 

General Terms 
Documentation, Security, Verification. 

Keywords 
Requirements Engineering, Security Requirements 

1. INTRODUCTION 
Security is about the prevention of harm caused by the actions of 
attackers. Attackers are people who gain by exploiting system 
failures, intentionally or accidentally provoked. This gain usually 
results in some harm to the system owner. The attacker 
manipulates some object in the system during an attack, to 
harmful effect. Objects so manipulated have value (the inverse of 
the harm) that must be protected.  

Security goals arise when stakeholders establish that objects in the 
context of the system, be they tangible (e.g. cash) or intangible 
(e.g. information), have direct or indirect value that the 

stakeholders wish to preserve. The value is direct when the object 
has an intrinsic value, almost regardless of context. The value is 
indirect when the value arises because of the context in which the 
object rests. Objects with direct or indirect value are called assets 
[13], and the stakeholders naturally wish to protect themselves 
from any harm that might come from abuse of these assets. For 
example, tangible assets might be destroyed, stolen, or modified; 
in this case, the harm is the loss of the asset itself (direct value). 
Information assets might be destroyed, revealed, or modified; the 
harm could be the loss or modification of the asset (direct value) 
or the consequences of exposing the asset (indirect value). 
Security requirements operationalize security goals, describing 
conditions under which the possibility of intentionally caused 
harm is reduced to an acceptable level. 

This paper is about security requirements, and is targeted at 
readers interested in early security analysis. There are three 
contributions. The first is definition: what security requirements 
are. The second is explicit inclusion of context: the world within 
which the system and the potential attackers rest. The third is 
determining satisfaction: whether the system can satisfy the 
security requirements. The paper can be thought of as a prequel to 
[11], which first presented our security satisfaction arguments, 
along with examples. 

2. RELATED WORK 
This section looks at related work on how security requirements 
are defined and represented. 

2.1 Security Requirements as Security 
Functions 

It is common to express security requirements by describing the 
security mechanisms to be used. For example, ISO 15408 [13-15], 
the ISO version of the Common Criteria, provides examples of 
security requirements of the general form “The […] Security 
Function (TSF) shall explicitly deny access of subjects to objects 
based on the [rules …]” [14], where “rules” appear to be a 
mechanism. Regarding encryption, one finds “The TSF shall 
distribute cryptographic keys in accordance with a [specified 
cryptographic key distribution method] that meets the following: 
[list of standards]” [14]. Again, a mechanism is being described. 
In addition, both examples say what the function is to do, not why 
it is to do it. 

The NIST Computer Security Handbook states that “These 
[security] requirements can be expressed as technical features 
(e.g., access controls), assurances (e.g., background checks for 
system developers), or operational practices (e.g., awareness and 
training)” [23], in effect defining security requirements in terms 
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of functions and practices. Other security guides imply that 
recommendations such as “Acquire Firewall Hardware and 
Software” (e.g. [2]) are requirements. 

Defining requirements in terms of function leaves out key 
information: what objects need protecting and, more importantly, 
why the objects need protecting. Although both the ISO and NIST 
documents say that the underlying reasons why objects are to be 
protected come from the functionality of the system, they provide 
little guidance on how to connect the functionality to the security 
needs. Instead of describing when and why objects are to be 
protected, they describe how the objects are to be protected. 

2.2 Security Requirements as NFRs  
Devanbu & Stubblebine [7] remark that security requirements are 
a kind of non-functional requirement. Kotonya and Sommerville 
[17], when discussing non-functional requirements, in which they 
include security, define them as "restrictions or constraints" on 
system services; similar definitions can be found in other text 
books. Rushby [26] appears to take a similar view, stating 
"security requirements mostly concern what must not happen". 
Using the Tropos methodology, Mouratidis et al [22] state that 
"security constraints define the system’s security requirements".  

Firesmith in [8] defines security requirements as “a quality 
requirement that specifies a required amount of security […] in 
terms of a system-specific criterion and a minimum level […] that 
is necessary to meet one or more security policies.” This appears 
to be a form of constraint, an impression reinforced by an 
example he provides: “The [application] shall protect the buyer-
related data […] it transmits from corruption […] due to 
unsophisticated attack [when] […] Buyer Buys Item at Direct 
Sale [to a level of] 99.99%.” 

The problem with these definitions is their lack of specificity and 
guidance for the designers. What “system services” are being 
constrained? What is the constraint, and what effect will it have 
on the functionality of the system? How does one validate the 
system against any eventual chosen constraint to ensure that it 
accurately reflects the stakeholders’ wishes? Referring to 
Firesmith’s example, what is an “unsophisticated attack?” What 
does the measure “99.99%” mean? It could mean that if 10,000 
attacks are known, the developers can ignore one. Alternatively, it 
could be a way of saying “all” without actually saying it.  

One major problem with percentage-style quantification of 
security requirements is the binary nature of the majority of 
security attacks; in most cases, an attack works or it does not. If 
an attack does not work the first time, it probably will not work 
the second time unless the parameters of the attack are changed. 
On the other hand, if the attack works once (the system is 
penetrated), then the attack will likely continue working until the 
vulnerability is removed. The result is that successful attacks can 
(usually) be repeated as often as the attacker wishes, and even 
shared amongst attackers. It is difficult to know what use to make 
of the percentage quantification in these cases. 

2.3 Other Portrayals of Security 
Requirements 

Many authors implicitly assume that security requirements are 
identical to high-level security goals. Tettero [29] is explicit about 

this, defining security requirements as the confidentiality, 
integrity, and availability of the entity for which protection is 
needed. While this is a clear definition, in some cases it may not 
result in precise enough requirements. Consider an example in 
health care: both doctors and administrators would probably agree 
on the importance of confidentiality, integrity, and availability of 
the clinical information, but they could disagree on the concrete 
security requirements that express those goals. The requirements 
need to be more explicit about who can do what, when. 

Some authors identify security requirements with security 
policies. Devanbu & Stubblebine [7] define a security 
requirement as "a manifestation of a high-level organizational 
policy into the detailed requirements of a specific system. [… 
We] loosely (ab)use the term 'security policy' […] to refer to both 
'policy' and 'requirement'". Anderson [3] is less direct; he states 
that a security policy is "a document that expresses […] what […] 
protection mechanisms are to achieve" and that "the process of 
developing a security policy […] is the process of requirements 
engineering". The difficulty with security policies is their 
chameleon-like meaning. The term can be used for anything from 
a high-level aspiration to an implementation. Therefore, without 
accompanying detailed explanation, it is not satisfactory to define 
security requirements as security policies. 

Lee et al [19] point out the importance of considering security 
requirements in the development life cycle, but do not define 
them. Heitmeyer [12] shows how the SCR method can be used to 
specify and analyze security properties, without giving the criteria 
for distinguishing them from other system properties. 

A number of papers have focused on security requirements by 
describing how they may be violated. For example, McDermott & 
Fox [21], followed independently by Sindre & Opdahl [27] and 
elaborated by Alexander [1], describe abuse and misuse cases, 
extending the use case paradigm to undesired behavior. Liu, Yu & 
Mylopoulos [20] describe a method of analyzing possible illicit 
use of a system, but omit the important initial step of identifying 
the security requirements of the system before attempting to 
identify their violations. One could argue that Chivers and 
Fletcher [6] fall into this camp with SeDAn, as they focus on 
attackers and the paths they might take into a system. The 
problem with these approaches is that they indicate what a system 
is not to do in specific situations, but not in the general case. 

van Lamsweerde [18] describes a process by which security goals 
are made precise and refined until reaching security requirements. 
Antón & Earp [4] use the GBRAM method to operationalize 
security goals for the generation of security policies and 
requirements, but do not define security requirements. 

3. THE FRAMEWORK 
The review in Section 2 exposed several problem areas: multiple 
definitions of security requirements, inconsistent and difficult to 
understand satisfaction criteria, and a general lack of a clear 
pathway for deriving security requirements from business goals. 
The security requirements framework described in this paper 
addresses these problems, facilitating an understanding of the 
elicitation, validation, and verification of security requirements 
and other artifacts by integrating the concepts of the two 
disciplines of requirements engineering and security engineering. 
From requirements engineering it takes the concept of functional 
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goals, which are operationalized into functional requirements 
while applying appropriate constraints. From security engineering 
it takes the concept of assets, together with threats of harm to 
those assets. In the framework: 

• Security goals aim to protect assets from harm. 

• Security goals are operationalized into security requirements, 
which take the form of a set of constraints on the functional 
requirements sufficient to protect the assets from the harms 
identified previously. Security requirements are, consequently, 
preventative. 

• Feasible realizations of the security requirements may lead to 
the need for the addition of secondary security goals, which 
will (eventually) manifest themselves as additional functional 
and/or security requirements. Secondary security goals may call 
for detective or preventative measures, a possibility which is 
discussed further below. 

• Security satisfaction arguments show that the system can 
respect the security requirements. 

The framework was developed in order to understand the place of 
security requirements within the development of an individual 
application, along with the relationships between the security 
requirements and other artifacts produced during development. 

3.1 Definition of Security Goals 
The security community has enumerated some general security 
concerns, labeling them with the acronym CIA, and more recently 
another A ([25] and other security textbooks): confidentiality, 
integrity, accessibility, and accountability. By connecting these 
general concerns to the assets implicated in a system, and then 
postulating actions that would violate these concerns, one can 
construct descriptions of possible threats on assets. These threat 
descriptions [10] are phrases of the form performing action X 
on/to/with asset Y could cause harm Z. Threat descriptions permit 
a form of asset-centered threat modeling, and are represented by a 
three-element tuple: the asset, the action that will exploit the 
asset, and the subsequent harm. Threat descriptions are generated 
by enumerating the assets involved in the system, then for each 
asset, listing the actions that exploit the asset to cause direct or 
indirect harm. For example, one can imagine erasing (the action) 
the customer records (the asset) of a company to cause loss of 
revenue (the harm). Security goals are found by applying prevent 
(also called avoid) to threat descriptions. 

More security goals can be found by combining management 
control principles and application business goals. Management 
control principles include ‘standard’ security principles such as 
least privilege and separation of duties. Application business 
goals will determine the applicability of management control 
principles to the system, for example by defining those privileges 
that are needed for the application, and excluding those that are 
not. Security goals found in this way have a form similar to 
“signatures of two separate people will be required for any 
expenditure over £1000” and “privilege to perform operation X 
shall not imply privilege to perform operation Y”. 

Note that other legitimate stakeholders may have conflicting 
security goals. The set of relevant security goals may be mutually 
inconsistent, and inconsistencies will need to be resolved during 

the goal analysis process before a set of consistent requirements 
can be reached. 

The goals of attackers could be useful when determining security 
goals for the system, for example when enumerating assets or 
quantifying harm. However, the goals of the system owner and 
other legitimate stakeholders are not directly related to the goals 
of attackers, because security is not a zero sum game like football. 
In football, the goals won by an attacker are exactly the goals lost 
by the defender. Security is different; there is no exact 
equivalence between the losses incurred by the asset owner and 
the gains of the attacker. To see this, look at two examples: 

• Robert Morris unleashed the Internet Worm [28], causing 
millions of dollars of damage, apparently as an experiment 
without serious malicious intent. The positive value to Morris 
was much less than the loss incurred by the attacked sites. 

• Many virus writers today are prepared to expend huge effort in 
writing a still more ingenious virus, which may cause little 
damage (screen message "You've got a Virus"). Generally, 
there is no simple relationship between the gains of a virus 
writer and the losses incurred by those who are attacked. 

The consequences of security not being a zero sum game are 
twofold: The first is that the evaluation of possible harm to an 
asset can generally be carried out without reference to particular 
attackers; one needs only to determine that harm can be incurred. 
The second is that the goals of attackers cannot be solely used to 
arrive at the goals of a defender to prevent harm, i.e. their security 
goals; further consideration is necessary to determine whether and 
what harm is incurred if the attacker satisfies his or her goals. 

3.2 Definition of Security Requirements 
We define security requirements as constraints on the functions of 
the system, where these constraints operationalize one or more 
security goals.  

Security requirements operationalize the security goals as follows: 

• They are constraints on the system's functional requirements, 
rather than themselves being functional requirements. As 
constraints, they are preventative measures. 

• They express the system's security goals in operational terms, 
precise enough to be given to a designer/architect. Security 
requirements, like functional requirements, are prescriptive, 
providing a specification (behavior in terms of phenomena) to 
achieve the desired effect. 

3.3 From Security Goals to Security 
Requirements 

There are two related sets of security goals and security 
requirements. The first, the primary goals and requirements, are 
those derived from the business goals and functional 
requirements. These goals and requirements are primary in the 
sense that if the resulting system will respect the primary security 
requirements, then the system will satisfy the primary security 
goal(s). 

Secondary security goals are additional goals that are added for 
one or both of the following reasons: 1) to enable construction of 
an acceptable satisfaction argument for the satisfaction of primary 
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security requirements, or 2) to permit an acceptable feasible 
realization of the primary security requirements. Satisfaction 
arguments are discussed later in this paper. 

The term feasible realization takes into consideration both 
technical feasibility and cost/benefit plus risk. In some cases, 
there may be no known way to respect a constraint and thereby 
prevent the harm; destroying a computer room with an atomic 
explosion comes to mind. In other cases, risk analysis might 
indicate that the cost of respecting a security requirement is 
excessive. In these cases, the analyst may decide to detect 
violation after the fact, and then both recover from and repair the 
breach. Availability requirements are a good example - many 
such requirements do not prevent loss of availability, but instead 
imply a recovery capability. Analysis of the secondary security 
goals may lead to the addition of secondary security requirements. 
This is, of course, a recursive process. 

Secondary security goals and security requirements are not 
secondary in terms of importance, but are instead secondary 
because they exist to enable satisfaction (to an acceptable level) 
of hierarchically superior security requirements. 

It is very important to note that adding secondary security goals 
and requirements can supersede the primary security requirement, 

and can change the context and behavior of the system. For 
example, choosing to use attack detection instead of prevention 
implies that the primary security requirement will not be directly 
satisfied, as the attack will not be prevented. The choice means 
that the detection goals (and associated security requirements) 
are considered suitably equivalent; they ‘cover’ and ‘replace’ 
(but do not delete) the primary security requirement. The same 
choice, use detection instead of prevention, could also change the 
behavior specification of the system because of the addition of 
domains and phenomena to facilitate detection. 

3.4 Security Requirements and Context 
It is important to reiterate that security requirements are applied 
in the context within which the system operates, which is larger 
than the software. A security requirement can be realized in 
multiple ways, some completely outside the software to be 
constructed.  

We use a variant of Jackson’s problem frames [16] to represent 
the system context; see [11] for examples. 

3.5 Development Artifacts and Dependencies 
All system development processes have recognizable stages that 
produce artifacts that are successively closer representations of a 
working system. These representations are core artifacts. They 
are ordered in an abstraction hierarchy, progressing from the 
most abstract to the final concrete working system. At early 
stages, core artifacts are typically documents or prototypes. The 
final core artifact is the working system itself, consisting of a 
combination of physical and software items.  

Support artifacts are artifacts that help to develop, analyze, or 
justify the design of a core artifact. They may include formal 
analysis, informal argument, calculation, example or counter-
example, etc. They are by-products of processes whose aim is to 
help produce verified and valid core artifacts. 

Two sets of core artifacts are of most interest to this paper. On 
the mainstream requirements engineering side, one finds 
descriptions of goals, requirements, and the system (in the large) 
context/architecture. On the security engineering side, one finds 
assets, threats and control principles. 

Dependencies between Artifacts. In a hierarchy of artifacts, there 
are dependencies between the artifacts. For example, an 
operationalized requirement is dependent upon a higher-level goal 
from which it has been derived, because alteration of the goal 
may cause alteration of the requirement. This kind of dependency 
is called hierarchical dependency. 

There is also a reverse kind of dependency: feasibility. If it proves 
impossible to implement a system that sufficiently satisfies a 
requirements specification, then this will force a change in the 
goals or requirements. The higher-level artifact is dependent on 
the feasibility of the artifacts below it in the hierarchy. 

These dependency relationships have an important implication for 
the structure of development processes. If an artifact is dependent 
upon the implementation of another artifact for its feasibility, then 
if the implementation is not feasible, there must be an iteration 
path in the process back to the ancestor from its descendant. 
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Figure 1 – Process Activity Diagram 
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3.6 Activities in the Framework 
An ordered set of activities for moving from functional goals to 
satisfaction arguments is shown in Figure 1. Boxes in the figure 
represent activities that produce artifacts. Typically, a box in the 
figure has two exits, one for success, and one for failure. Failure 
can be one of two kinds. The first is that it is not feasible to create 
a consistent set of the artifacts to be constructed by that activity. 
The second is that validation of the artifacts against a higher level 
– such as validation of security requirements against security 
goals – shows that they fail to meet their aims. For example, one 
might be unable to construct a system context that is both 
accepted by the stakeholders and permits derivation of functional 
requirements from the functional goals. Alternatively, one might 
fail to construct a satisfactory satisfaction argument. Iteration may 
cascade upwards if the problem cannot be resolved at the 
preceding step.  

There are four general sections in the activity diagram. Although 
one could describe these sections in terms of the artifacts that are 
produced, along with the ordering between them, it is clearer to 
describe them as activities that are to be incorporated into the 
development process. The activities are 1) identify functional 
requirements, 2) Identify security goals, 3) identify security 
requirements, and 4) construct satisfaction arguments. We discuss 
each in turn below. 

3.6.1 Section 1: Identify Functional Requirements 
The only requirement the framework places upon the 
development process is that one output a representation of the 
context. How the requirements engineer gets to this point is open. 

3.6.2 Section 2: Identify Appropriate Security Goals 
There are four general steps required to identify the security 
goals: identify candidate assets, identify harms (generate threat 
descriptions), apply management principles, then determine the 
security goals. The result is a set of security goals, which are 
validated by ensuring that the business goals remain satisfied. 

The first iteration through this step results in the generation of 
primary security goals. Subsequent iterations result in secondary 
security goals, which are traceable, perhaps through multiple 
levels and through security requirements, to the original, primary, 
security goal(s). 

3.6.2.1 Identify Candidate Assets 
The goal of this step is to find all the objects in the system context 
that might have value, direct or indirect. In general, assets consist 
of all the information objects stored in or accessed by the system-
to-be and any tangible objects such as the computers themselves. 
An object has direct value when the potential harm caused by a 
threat is to the object itself. An object has indirect value when a 
threat involving that asset causes harm somewhere else, such as to 
revenue, to costs, or to reputation. An object can have both direct 
and indirect value; when money is taken from a bank, the bank 
loses both the money and its reputation. 

One potential asset might contain, or enclose, other potential 
assets. A good example is a database that contains individual 
information assets. Another example is backup media, which can 
contain any number of information assets. 

3.6.2.2 Generate Threat Descriptions 
In general, harm is caused by the negation of one or more of the 
security concerns described in Section 3.1. For information assets, 
these concerns are confidentiality, integrity, and availability. The 
concerns are similar for tangible assets: exposure, modification, 
and deprivation (theft or destruction). These concerns are used to 
enumerate the threat descriptions. One asks questions of the form 
“what harm could come from violating the [insert concern here] 
of [insert asset here]?” Answers to these questions are threat 
descriptions, which are represented as tuples of the form 
{action, asset, harm}. 

3.6.2.3 Apply Management Principles 
The functions that the system is to provide must be compared to 
the management principles that the organization wishes to apply. 
These principles might include separation of duties, separation of 
function, required audit trails, least privilege (both need to know 
and need to do), Chinese wall, and data protection (not intended 
to be an exhaustive list). The sector the system will run in may 
have standard management principles, such as no outside 
connections and no removable media. A list of security goals is 
generated by checking the applicability of the management 
principles to the assets and business goals of the system. The 
result is a set of achieve goals with forms similar to “achieve 
Separation of Duties when paying invoices” or “audit all uses of 
account information.” 

3.6.3 Step 3: Identify Security Requirements 
Recall that we define security requirements as constraints on 
functional requirements that are needed to satisfy applicable 
security goals. Two operations are needed to establish which 
goals are applicable to a functional requirement: determining 
which assets are involved to find the threat descriptions that 
apply, and settling on appropriate goals derived from management 
principles. One finds which assets will be implicated in satisfying 
a particular functional requirement by drawing the context for that 
functional requirement as a problem diagram. The list of assets 
implicated in the context leads to a list of threats descriptions that 
must be mitigated. The list of assets and the function itself will 
point at the management principle goals to apply. The security 
requirements are these mitigations or achieve goals, constraining 
the function in ways that will achieve the security goals. 

A simple example of such a constraint is: 
The system shall provide Personnel Information 
only to members of Human Resources Dept. 
 

The constraint ("only to …") is attached to the function 
("provide Personnel Information"); it only makes sense in 
the context of the function. One might also impose temporal 
constraints: 
The system shall provide Personnel Information 
only during normal office hours; 
 

and complex constraints on traces: 
The system shall provide information about an 
organization only to any person who has not 
previously accessed information about a 
competitor organization (the Chinese Wall 
Security Policy, [5]). 
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Availability requirements will need to express constraints on 
response time: 
The system shall provide Personnel Information 
within 1 hour for 99% of requests. 
 

Note that this differs only in magnitude from a Response Time 
quality goal, which might use the same format to require a sub-
second response time. 

In the same way as security goals, the first iteration through this 
step results in the generation of primary security requirements. 
Subsequent iterations generate secondary security requirements. 

3.6.4 Step 4: Validation of System Context 
A key verification step for the framework described in this paper 
is the ability to show that the system can satisfy the security 
requirements. We propose the use of structured informal and 
formal argumentation for this verification step: to convince a 
reader that a system can satisfy the security requirements laid 
upon it. These arguments, called satisfaction arguments and 
discussed more completely in [11], are in two parts. The first part 
of the argument consists of a formal argument to prove that a 
system can satisfy its security requirements, drawing upon claims 
about the behavior and properties of domains in a system. The 
claims about behavior of the domains are trust assumptions [9]. 
The second part of the argument consists of structured informal 
arguments to support the trust assumptions about system behavior 
and characteristics made in the formal argument. Building on our 
understanding of security requirements, the satisfaction arguments 
assist with identifying security-relevant system properties, and 
determining how inconsistent and implausible assumptions about 
them affect the security of a system. 

3.7 Iteration 
One reason that an analyst may fail to construct a convincing 
satisfaction argument is that there is not enough information 
available to justify the using a trust assumption. For example, to 
justify a claim that users are authenticated, there must be some 
phenomena exchanged between the user and the rest of the 
system. The choice of phenomena and behavior is a design 
decision that may have a significant impact on the system 
architecture and context. For example, it is possible that 
architectural choices may have already been made and are being 
imposed. For these reasons, the framework assumes that the 
process includes Twin Peaks iterations [24], asking the designers 
to add more detail into the system context so that claims can be 
justified. These iterations move from step four to steps one and 
two. 

The details added during a Twin Peaks iteration may well require 
new functions, thus functional requirements. Consider a system 
where to satisfy a confidentiality requirement, designers choose 
authentication. Further assume that the designers choose a retinal-
scanning authentication technique. Appropriate domains and 
behavior are added to the context to describe how authentication 
takes place from the point of view of the user (in problem space). 
However, one cannot necessarily stop at the addition of domains 
and phenomena. The authentication system may need to be 
managed. New assets may have been added to the system; for 
example the retina description information. New domains have 
been added: for example the administrators. The process would 

then restart in step 1 with a re-analysis of the functional 
requirements so that the consequences of the new goal are 
understood. New assets (e.g. the authentication data) would be 
found in step 2, and then new security goals to protect the assets 
and new security requirements to constrain functional operations 
wherever the new asset appears would be added. 

Another possibility is that the Twin Peaks iteration will establish 
that there is no feasible way to satisfy the security requirement(s). 
In this case, the designers and the stakeholders must come to an 
agreement on some acceptable alternative, such as a weaker 
constraint, attack detection, and/or attack recovery. Appropriate 
secondary security goals are added to the system, probably 
resulting in new secondary security requirements. The resulting 
secondary security goals and requirements ‘cover’ the ones that 
were not feasible. Satisfying the new secondary goals and 
requirements satisfies the original security goals and 
requirements. Clearly the ‘secondariness’ of any functional goals 
added must be remembered. If the hierarchically superior (‘more 
primary’) security requirement is changed, then the secondary 
security goals may need changing.  

Lastly, it is possible that no feasible way to satisfy a security 
requirement exists, and no agreement can be reached on 
alternatives. In this case, one must return to the original business 
and quality goals of the application, modifying the initial 
conditions to change the assets implicated in the system, or the 
security goals of the system. Alternatively, one might decide that 
it is infeasible to build the system. 

4. CONCLUSION 
This paper has presented a framework for security requirements 
engineering where a) asset and security goal analysis are done in 
the business context of the system, b) the effects of security 
requirements on the functional requirements are understood, c) 
design constraints are taken into account, and d) the ‘correctness’ 
of security requirements is established through the use of 
satisfaction arguments. The framework unifies our work on early 
threat analysis [10], trust assumptions [9], and satisfaction 
arguments [11]. 

As noted in the introduction, there are three contributions in this 
paper. The first is definition: a coherent definition of what 
security requirements are. The second is explicit recognition of 
the importance of context: the world within which the system and 
the potential attackers exist. The third is a structure for 
satisfaction arguments for validating whether the system can 
satisfy the security requirements. 
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