

Bridging Requirements and Architecture for Systems of Systems

Charles B. Haley

Asia Pacific University College of Technology

and Innovation

Technology Park Malaysia

Kuala Lumpur, Malaysia

charles [at] ucti.edu.my

Bashar Nuseibeh

Centre for Research in Computing

The Open University

Walton Hall

Milton Keynes, UK

b.nuseibeh [at] open.ac.uk

Abstract
A system of systems (SoS) is formed from existing

independent component systems. Some reasons these

independent systems might be combined include a merger

or acquisition, a temporary partnership, because of the

formation of an integrated supply chain, or if a service-

oriented architecture is used. SoSs are difficult to analyze

because of the scale of the integration, the components’

independent existence, and the (potentially) conflicting

nature of their requirements. We propose bridging

between requirements analysis and architecture of an SoS

by using an interdisciplinary approach. From Software

Engineering we take iterating between requirements and

architecture, and from Philosophy we take structured

argumentation. Iterating between requirements and

architecture is ideal for exposing issues with constructing

a system of systems from existing artifacts. Structured

argumentation is used to explore these issues, to inform

the analysis, to reveal underlying assumptions in the

analysis, and to help either establish system correctness

to an acceptable level or provide rebuttals that invalidate

the analysis.

1. Introduction

There is a growing recognition that today’s complex

information systems are not single entities, but instead are

independent parts that function together. The independent

parts are themselves complex systems, often having a

lifespan and purpose of their own divorced from whatever

role they play in the larger context. Easterbrook observes

that the collection of parts is composed into “a complex

system-of-systems that includes a broad technological

infrastructure along with a wide set of human activities”

[6]. Research in Systems Engineering concurs with his

observation: systems of systems (SoS) are “large-scale

concurrent and distributed systems the components of

which are complex systems themselves” [16], and require

“[an expansion to systems engineering] to consider the full

range of systems engineering services increasingly needed

in a modern organization […]” [4].

Software-based information systems are usually built

from existing components. Some components are small,

such as networking services, and others are large, such as

a commercial DBMS. The components provide services

that help satisfy requirements. Note, however, that the

requirements for a component must be met before it can

provide its services, and the requirements and architecture

of the software system must take the component’s

requirements and capabilities into account. In other words,

the requirements/composition process is iterative. System

requirements affect which components are chosen, the

components’ capabilities affect what the system can do,

and the requirements of the components affect how the

system is architected and, potentially, its requirements.

Although building an SoS is conceptually similar to

building with components, the scale is different. The

systems (the components) that comprise an SoS have a life

and purpose independent of the SoS, with their own

requirements, architecture, and lifecycle. Integrating these

systems into an SoS is composition on an ultra-large scale.

All the complexities of composition, such as

inconsistencies, incompatibilities, and uncertainty, are

also on an ultra-large scale [17]. As a result, determining

unambiguous and consistent requirements for an SoS is

challenging, and may not even be possible. For example,

requirements for the component systems might conflict

with requirements for the SoS, something easy to imagine

for information security. What is possible to do in a

reasonable timeframe or budget might conflict with what

is required, usually resulting in changed requirements.

Requirements might even be unknowable, perhaps

because of stakeholders’ rapidly changing needs [17].

Service-oriented applications raise similar issues.

According to The Open Group, a service in a service-

oriented application “is a logical representation of a

repeatable business activity”, and “is self-contained” [11].

Ghezzi suggests that applications built using service-

oriented principles are intended to support “dynamic,

goal-oriented opportunistic federations of organizations”

that use “services that should be composable” [7].

Papazoglou et al define services as “autonomous,

platform-independent entities that can be described,

published, discovered, and loosely coupled in novel ways”

[19]. In other words, a service-oriented application is an

SoS where the systems are the services. We can expect

them to exhibit the same difficulties as other SoSs.

These difficulties do not relieve us of the need to

analyze the requirements of an SoS. What we must find is

‘how’. This paper presents a proposal for using an

interdisciplinary approach to analyze information system

requirements for systems of systems, bridging require-

ments engineering and architecture. From requirements

engineering we take:

• the Twin Peaks model [18] for iterating between

requirements and architecture, helping us understand

the impact of system requirements on system

architecture and vice versa.

• the i*/Tropos requirements engineering methodologies

[3, 23], to help us understand the interplay between the

components from an agent, action, intention point of

view, and

• a variant of Jackson’s problem diagrams [14] to

represent the SOS’s combined context, to help us

understand how the systems are interconnected and

what is interchanged between them.

From philosophy we take structured argumentation, in our

case Toulmin’s model [20], to help ensure that at each

kind of abstraction and at each iteration, the analyst

understands the ramifications of the choices and

assumptions made during requirements analysis.

Our challenge is to combine these methods into a

whole that is practical to use and provides useful insights

to the requirements analyst and to the stakeholders. We

also want to assist in establishing ‘due diligence’-style

arguments that help with resource and time allocation, and

possibly whether and how to go forward with construction

of the system.

It is worth noting that although we claim that our

proposed combination of tools and methods is both novel

and useful, we do not claim that our use of an inter-

disciplinary approach is novel. Argumentation has been

used for many years in artificial intelligence, in particular

in the legal domain; for some examples, see [1, 2, 8]. One

can find several formal computing models of arguments

(e.g., [5, 9, 12, 15]). The emerging discipline of Service

Science, Management, and Engineering (SSME) holds

that SSME is inherently interdisciplinary, covering “all

types of value-creating resources, and the disciplines or

competencies that study and apply them” [13]. Our own

work in security requirements [10] proposes methods

similar to what we propose here.

The remainder of this paper is structured as follows.

Section 2 presents the notations we propose to use for

describing systems. Section 3 describes how we want to

use structured argumentation. Section 4 presents an

illustrated example, and Section 5 concludes.

2. Requirements and Architecture

We established in the introduction that requirements

for an SoS can affect the component systems, and that the

requirements for the component systems can affect the

SoS. Because of these cross-ways effects, we propose

using the Twin Peaks model to iterate between systems

requirements and systems architecture. As seen in Figure

1, Twin Peaks informs the development of an architecture

by supplying the requirements as they are determined.

Equally, the evolving architecture informs the

requirements process when the facts on the ground argue

for or against satisfaction of some requirements. We

recognize that this process intermixes, and perhaps

confounds, design and requirements. Our position is that

producing the ‘right’ requirements is a laudable goal, but

ultimately not useful if the requirements cannot be

satisfied given the constraints or within acceptable cost

and time limits.

Our proposal calls for requirements modeling to

determine, at some level of abstraction, what the SoS is

intended to do and what the component systems already

do. Large-scale systems will require use of a higher

abstraction level, at least initially. For this analysis we

chose i*/Tropos to model the systems from an agent +

intention point of view. We chose i* because it shows

delegation between agents and responsibilities of agents at

varying levels of detail. The agents may be computers,

humans, or organizations. We postulate that by modeling

at the level of agents, we can put aside the problem of

system and organizational boundaries, permitting us to

Figure 1 – Twin Peaks (from [18])

reason about the existing systems and the desired system

in terms of responsibility and intention. Conflicts

discovered at this level are resolved by changing the

requirements, changing the existing systems, or by adding

agents that act as ‘impedance matchers’ between the

systems.

An i*/Tropos model describes neither the physical

components in a system nor the information that

components share on the connections. As such, one is not

able to detect problems that arise because of the topology

or capability of components. For this reason our proposal

calls for describing the system architecture in real-world

terms using Jackson’s problem diagrams [14]. Problem

diagrams describe a system in terms of physical domains

and the connections between them. Domains can be

anything that exists in the world, including people,

computers, other machines, or even naturally-occurring

items like rivers. Problem diagrams are well suited to

describe large-scale systems, because the domains can be

at any appropriate level of abstraction, as can the

description of what information is shared between

domains. Finally, domains can be combined and details

can be elided, both of which can help when analyzing

large-scale systems.

Under our proposal, the analyst can begin in any way

that makes sense to the analyst, including: 1) describe the

existing systems’ behavior with i*, 2) describe the existing

systems’ architecture with problem diagrams, 3) describe

the future system’s behavior, or 4) describe the future

system’s architecture. The analysis makes Twin Peaks

iterations between the descriptions (existing or future).

When describing the future system, requirements may be

at odds with reality, either conflicting with requirements

of the existing system or by demanding an architecture

that does not exist.

During analysis, decisions about the goals of agents

will frequently be made with incomplete knowledge. The

decisions will be based upon assumptions, which might be

about which capabilities do exist, which can exist, what

stakeholders want and do not want, the regulatory context,

information and physical security, and budget and time.

Although assumptions are related to goals, they are not the

same. A goal is an objective, and is neither true nor false.

An assumption is an assertion of truth, and its veracity can

be challenged. Goals are explicit, but assumptions may be

implicit. Structured argumentation, described in Section

3, is used to expose and test the veracity of assumptions

and, should the assumptions not be correct, to explore the

consequences.

3. Structured Argumentation

As noted above, assumptions play a significant role in

the analysis. To increase confidence and to help avoid

costly mistakes, the correctness of assumptions should be

tested. An assumption might itself not stand up to

scrutiny, or it might depend on deeper unstated

assumptions that are not correct. For example, when

considering information flow between the systems of two

companies, an analyst might assume that user security

mechanisms will be compatible because the same

operating system is used in each company. One unstated

assumption is that both companies are using the native

security features of the operating system. Probing further

might expose that one company is using a third-party

biometric security product, invalidating the unstated

assumption. Early exposure and testing of the underlying

assumptions will help avoid costly mistakes.

We propose using Toulmin’s structured argumentation

[20] to test the correctness of assumptions and to expose

deeper underlying assumptions. Toulmin’s argument

structure, shown in Figure 2, shows what the parts of an

argument are and how the parts fit together. The arrows in

the figure show ‘movement’ of the argument from grounds

(left) to claims (right). Intersections show where the parts

of the argument connect to support or detract from the

argument.

Toulmin et al. [21] describe arguments as consisting

of:

1. Claims, providing the end point of the argument –

what one wants to establish is true.

2. Grounds, supplying support for the argument, e.g.,

evidence, facts, common knowledge, etc.

3. Warrants, connecting and establishing relevancy

between the grounds and the claim. A warrant

explains how the grounds are related to the claim,

not the validity of the grounds themselves.

4. Backing, showing that the warrants are themselves

trustworthy. These are in effect grounds for

believing the warrants.

5. Modal qualifiers, establishing within the context of

the argument the reliability or strength of the

connections between the components. Modal

qualifiers permit the introduction of rebuttals.

6. Rebuttals, describing conditions that might

Figure 2 – Toulmin’s argument structure

invalidate any of the grounds, warrants, or backing,

thereby reducing the support for the claim.

Arguments are summarized by Toulmin et al. [21] as

follows: “The claims involved in real-life arguments are,

accordingly, well founded only if sufficient grounds of an

appropriate and relevant kind can be offered in their

support. These grounds must be connected to the claims

by reliable, applicable, warrants, which are capable in

turn of being justified by appeal to sufficient backing of

the relevant kind. And the entire structure of argument put

together out of these elements must be capable of being

recognized as having this or that kind and degree of

certainty or probability as being dependent for its

reliability on the absence of certain particular extra-

ordinary, exceptional, or otherwise rebutting

circumstances.”

In our proposal, an initial assumption is a claim;

something that is assumed to be true. Using the argument

structure, we ask “why is this claim true?” The answer

will produce evidence, or grounds, for the argument.

Asking “what relationship does this evidence have with

the claim” will generate warrants: assumptions (grounds)

that connect the evidence to the claim. Asking “what

could invalidate the argument” will produce rebuttals.

Considering our earlier security example, the claim

‘security mechanisms are compatible’ is supported by

grounds ‘the same operating system is used’. However,

asking about the relevance of grounds will expose the

(unstated but assumed) warrant ‘using the same operating

system means the companies are using the same security

mechanisms.’ This warrant is clearly false, as there is no

guaranteed causal relationship between use of an

operating system and use of a security mechanism. The

compatibility claim is not supported by the evidence.

4. An Illustrated Example

This section presents a simplified example illustrating

our proposed approach. We recognize that the scenario is

overly simple, that the example does not show whether

our ideas will scale up, and that the issues raised are rather

obvious. This is intentional; our goal at this point is to

present our concepts while minimizing complexity in the

scenario.

Industrial Weights & Measures Ltd (IWM) has

developed a product they believe will sweep the world, a

customizable kitchen weighing scale. Called the OffScale,

it can be delivered in any combination of 6,000 colors,

with or without decoration composed of precious metal or

stones. The scale speaks six languages or dialects; the

customer chooses which six from 218 available. It

provides nutrition information based on what is being

weighed; the nutrition tables are specific to the customer’s

region. In addition, the scale can be equipped with a

wireless networking facility appropriate for the customer’s

region, permitting the scale to retrieve nutrition

information for food products not in its database.

IWM is capable of manufacturing the scales, but it

does not have an appropriate sales channel for such a

luxury item, support capacity in the target regions, or the

capability to provide the wireless networking. Both to

solve these problems and to give the desired ‘exclusive’

impression, IWM forms a virtual enterprise, OffScale Ltd.

The partners are For You Only (FYO), a company

specializing in sale of exclusive impulse-purchase

products; Global Support Inc (GSI), a provider of service

and technical support; and Worldwide Roaming (WR), a

provider of mobile international roaming data networks.

FYO insists that because an OffScale will frequently be

purchased on impulse, the sales person must be able to

produce price quotes while the person is in the store.

Unfortunately, the complexity of customization is such

that sales people must use a customizer provided by IWM.

The customizer will provide a list of legal options at every

point, along with the price and delivery time. If the

wireless option is chosen, then WR must be consulted to

find what kind of network hardware is required and to

price the connection. Differing warranty service levels are

available, so GSI must price based on the service level

and the region. A purchased configuration is passed to

IWM to be built, to WR to provision the network, to GSI

to arrange the support, and to FYO to invoice the

customer and prepare the selected delivery method.

All of the companies agree to present an OffScale Ltd

face to the world. However, to preserve their individual

competitive advantages, each company wishes to keep its

operational and cost structures private. Each organization

has its own information system. These systems will be

used to support OffScale, but will also be used to support

other parts of their businesses. The companies believe that

their existing applications will be sufficient to support

OffScale.

In this paper, we will limit our requirements

examination to the sales process. Figure 3 shows the i*

intentional model for this process. The circles are actors in

the system, and the ovals are goals that one actor

delegates to another. We see that a prospect delegates the

goal Quote Scale to the sales person; the buyer does not

care how the goal is achieved. Similarly, the salesperson

delegates the goal Configure Product to an agent at IWM,

and so on. The diagram tells us that for a sales person to

make a quote while face-to-face with a prospect, all four

partners are involved and must provide the needed

information (satisfy their delegated goals) in real time. As

such, the companies must be networked together and all

the quoting processes automated.

We next produce the context diagram for the system,

using a variant of Jackson’s problem diagrams. Figure 4

shows the proposed context diagram for the SoS, based on

the stated premise that the existing applications will

support the sales processes. The solid boxes represent

physical items (domains in Jackson’s terms), in this case

computer systems running an application; the application

is noted in the box. The lines between boxes indicate that

information (phenomena in Jackson’s terms) is shared

between the computers, in our case by a network of some

kind. The dashed boxes represent corporate boundaries,

and are shown for information only. The domains in the

diagram are summaries; they do not show the details of

the computing systems. In Jackson’s terms, the domains

are projections, showing the system at a reduced level of

detail to facilitate the analysis.

Our next step is to construct an argument diagram for

the requirement that accurate price quotes are available in

real-time (seconds). Figure 5 shows an initial argument for

the requirement, constructed from information provided to

the analyst by the system architects, and derived from the

i* diagram. The diagram says that assuming that the two

grounds (all pricing steps are automated, and systems are

networked) are true, and assuming that the warrants

(networks permit application integration and automation

permits rapid response) are true, then the claim quotes

will be available quickly is also true. However, after further

reflection the analyst thinks of three rebuttals:

circumstances that if true invalidate the assumptions and

therefore the argument. If any of these rebuttals can be

shown to be true, the argument is false.

The first rebuttal raises the possibility that either a

company’s systems are not networked at all, or that they

are networked in a way that does not permit application

integration. For example, if one of the companies does not

have an extranet facility (a way of permitting outside

access to some parts of the internal network) of some kind

or another, then the network is in effect not available. The

second rebuttal challenges the warrant automation permits

rapid response by asking if the existing applications in

fact contain the application programming interfaces

(APIs) required to support OffScale. The third rebuttal

challenges the assertion that all the functions necessary to

quote a price are already automated.

The analyst would take these rebuttals back to the

system architects and stakeholders for further

consideration. In our scenario, this questioning surfaces

the following facts:

• When precious stone decorations are to be quoted, to

avoid what was thought to be large inventory costs the

IWM customizer requires that stones be priced

manually, which introduces significant delay. FYI

asserts that delaying a quotation is unacceptable. To

resolve this problem, either the requirement must

Figure 3 – i* diagram of OffScale’s sales process

IWM

Manufacturing

Configuration

Control

System

IWM

Salesforce

configuraton

application

FYO

Salesforce

application

OffScale

Configuration

Application

WR

Salesforce

Provisioning

Application

WR

Provisioning

Database

GSI

Salesforce

Costing

Application

GSI

Inventory and

Pricing

System

Figure 4 – First context diagram

Ground: Systems

are networked

Ground: All pricing

steps are automated

Warrant: Automation

permits rapid response

Warrant: Networks permit

application integration
except if

Claim: Quotes will

be available rapidly

W = Warrant, G = Grounds, C = Claim, R = Rebuttal

Rebuttal: Networks are

internal only

Rebuttal: Applications do

not have needed functions

Rebuttal: Applications do

not have APIs

Figure 5 – Argument that prices are available

change or the precious stones configuration option must

be removed or automated somehow.

• GSI has never needed an extranet, because all of its

employees operate in GSI offices. The company has no

facility in place for allowing controlled external access

into its corporate intranet. An extranet gateway must be

added to their network.

WR’s provisioning application was not designed to

separate business services from the user interface. Several

the business services, for example generating the files that

control the network switches, are implemented in the GUI

part of the client application, making them inaccessible to

the FYO configurator. A new application must be built

that separates out the necessary business services, in order

to support access by FYO’s application.

The process of exposing these ‘facts on the ground’ is

in fact an iteration between requirements and architecture.

By asking the right questions, one discovers the reality of

the situation: that the existing applications cannot support

the desired application. Given this reality, one must either

change the requirements expressed in the intentional

model or change the system architecture. In our case, the

partners make the latter choice, and Figure 6 presents the

result. All of the partners have agreed to supply a gateway

application that implements an agreed-upon API. In GSI’s

case, the gateway application will serve as the extranet

gateway. In WR’s case, the application will provide the

business services implemented in the GUI. In IWM’s

case, the application will keep track of a small inventory

of precious stones, permitting rapid pricing of a fixed

number of configurations.

At this point the analyst should redo the arguments,

documenting the assumptions behind the new architecture

and challenging them where appropriate.

5. Discussion and Future Work

Our position is that analyzing requirements of systems

of systems using our proposed combination of tools

should provide the analyst with high-quality information

early, potentially avoiding costly mistakes by exposing

issues earlier in the life cycle. In addition, our method

should provide input to due-diligence arguments, helping

with the larger decisions (to proceed or not), with the

smaller decisions (how much to invest), and should the

need arise, with providing a trace of why decisions were

made and the information available.

One question that arises is “where do the rebuttals

come from?” We contend that many, if not most, of the

rebuttals will come from asking three questions about

each of the grounds and warrants in an argument: “why is

this true”, “what could make it not true, and “what

happens if it is not true?” Our contention needs to be

tested in a real-world project.

Our next step is to further test our proposal by

extending our example, adding complexity and further

iterations. In addition, we will test our position that these

techniques will scale up, helping with requirements

analysis of larger systems of systems. After this further

exploration, or instead of it if an appropriate project is

available, we wish to test our proposal in a real-world

setting in a running project. An after-the-fact case study

approach could also be used, as long as we have access to

the people who were involved with the project.

We conjecture that our approach will provide benefit

when analyzing requirements for monitoring and

managing SoSs. Wang et al provide a formal framework

for system monitoring, where the monitoring requirements

come from i* goal models [22]. However, some issues

arise when considering using their framework on an SoS:

• Visibility: information required by the monitor might

be in a part of the SoS not visible to the monitor, or

may be confidential information that the system owner

chooses not to share,

• Scale: it is almost certainly impractical to instrument

everything in an SoS, and therefore choices must be

made about what to monitor,

• Change: the individual systems will likely not be stable,

complicating the analysis of monitored data.

• Consistency: conditions considered anomalous by one

member of the system may be considered correct by

another.

Figure 6 – Enhanced context diagram

We postulate that our proposal helps overcome these

issues. The intentional model for the SoS will provide

many clues about what is important in the SoS and

therefore what is critical to monitor. The context diagram

will help decisions about where to place the monitor’s

probes to overcome visibility and stability problems. The

arguments will help determine correctness: whether the

proposed partial monitoring is sufficient. Our conjecture

needs further exploration and validation.

In addition to validating the approach itself, we want to

investigate whether existing tool support is adequate, and

if not, what support is needed.

6. References

[1] T.J.M. Bench-Capon and G. Staniford, “PLAID: Proactive

Legal Assistance,” Proceedings of the 5th International

Conference on Artificial Intelligence and Law, College

Park, MD, USA: ACM Press, 1995, pp. 81 - 88.

[2] T. Bench-Capon and H. Prakken, “Argumentation,”

Information Technology & Lawyers: Advanced

technology in the legal domain, from challenges to daily

routine, A.R. Lodder and A. Oskamp, eds., Springer,

2005, pp. 69-90.

[3] P. Bresciani, A. Perini, et al., “Tropos: An Agent-Oriented

Software Development Methodology,” Autonomous

Agents and Multi-Agent Systems, vol. 8, no. 3, May. 2004,

pp. 203-236.

[4] P.G. Carlock and R.E. Fenton, “System of Systems (SoS)

enterprise systems engineering for information-intensive

organizations,” Systems Engineering, vol. 4, no. 4, Oct.

2001, pp. 242-261.

[5] C.I. Chesñevar, A.G. Maguitman, and R.P. Loui, “Logical

models of argument,” ACM Computing Surveys, vol. 32,

no. 4, Dec. 2000, pp. 337-383.

[6] S. Easterbrook, “Scale Changes Everything:

Understanding the Requirements for Systems of Systems,”

Keynote presented at 6th IEEE International Conference

on COTS-based Software Systems (ICCBSS'07), Banff,

Alberta, Canada, 1 Mar 2007.

[7] C. Ghezzi, “Service-Oriented Computing: Where Does It

Come From? A Software Engineering Perspective,”

Keynote presented at 3rd International Conference on

Service-Oriented Computing, Amsterdam, The

Netherlands, Dec 2005.

[8] T.F. Gordon, “The Pleadings Game: Formalizing

Procedural Justice,” Proceedings of the 4th International

Conference on Artificial Intelligence and Law,

Amsterdam, The Netherlands: ACM Press, 1993, pp. 10-

19.

[9] R. Haenni, B. Anrig, J. Kohlas, and N. Lehmann, “A

Survey on Probabilistic Argumentation,” Proceedings of

the Adventures in Argumentation Workshop, held at the

Sixth European Conferences on Symbolic and

Quantitative Approaches to Reasoning with Uncertainty

(ECSQARU'01), A. Hunter and S. Parsons, eds., Toulouse,

France: 2001, pp. 19-25.

[10] C.B. Haley, R. Laney, J.D. Moffett, and B. Nuseibeh,

“Security Requirements Engineering: A Framework for

Representation and Analysis,” Transactions on Software

Engineering (IEEE), vol. 34, no. 1, Jan. 2008, pp. 133-

153.

[11] D. Hornford, “Definition of Service-Oriented

Architecture,” The Open Group, Jun 2006;

http://opengroup.org/projects/soa/doc.tpl?gdid=10632

(accessed 18 Apr 2008).

[12] A. Hunter, “Making Argumentation More Believable,”

Proceedings of the Nineteenth National Conference on

Artificial Intelligence, San Jose, CA, USA: The AAAI

Press, 2004, pp. 269-274.

[13] IfM and IBM, Succeeding through Service Innovation: A

Discussion Paper, University of Cambridge Institute for

Manufacturing, Cambridge, UK, 14 Jul 2007.

[14] M. Jackson, Problem Frames, Addison Wesley, 2001.

[15] A. Jøsang, “Artificial Reasoning with Subjective Logic,”

Second Australian Workshop on Commonsense

Reasoning, Perth, Australia: 1997.

[16] V. Kotov, Systems of Systems as Communicating

Structures, Technical Report HPL-97-124, HP Labs, Oct

1997.

[17] L. Northrop, P. Feiler, et al., Ultra-Large-Scale Systems,

Software Engineering Institute, Pittsburgh, PA, USA, Jun

2006.

[18] B. Nuseibeh, “Weaving Together Requirements and

Architectures,” IEEE Computer, vol. 34, no. 3, Mar. 2001,

pp. 115-117.

[19] M.P. Papazoglou, P. Traverso, S. Dustdar, and F.

Leymann, “Service-Oriented Computing: State of the Art

and Research Challenges,” Computer, vol. 40, no. 11,

2007, pp. 38-45, doi:10.1109/MC.2007.400.

[20] S.E. Toulmin, The Uses of Argument, Cambridge, UK:

Cambridge University Press, 1958.

[21] S.E. Toulmin, R.D. Rieke, and A. Janik, An Introduction

to Reasoning, New York, NY, USA: Macmillan, 1979.

[22] Y. Wang, S.A. McIlraith, Y. Yu, and J. Mylopoulos, “An

automated approach to monitoring and diagnosing

requirements,” Proceedings of the 22nd IEEE/ACM

International Conference on Automated Software

Engineering (ASE'07), Atlanta, Georgia, USA: ACM, 5

Nov 2007, pp. 293-302, doi:10.1145/1321631.1321675.

[23] E. Yu, “Towards Modelling and Reasoning Support for

Early-Phase Requirements Engineering,” Proceedings of

the Third IEEE International Symposium on Requirements

Engineering (RE'97), Annapolis, MD, USA: 6 Jan 1997,

pp. 226-235.

