
Using Problem Frames and Projections to Analyze
Requirements for Distributed Systems

Charles B. Haley, Robin C. Laney, Bashar Nuseibeh

Department of Computing, The Open University,
Walton Hall, Milton Keynes MK7 6AA, UK

{C.B.Haley, R.C.Laney, B.Nuseibeh} @ open.ac.uk

Abstract. Subproblems in a problem frames decomposition frequently make
use of projections of the complete problem context. One specific use of projec-
tions occurs when an eventual implementation will be distributed, in which
case a subproblem must interact with (use) the machine in a projection that
represents another subproblem. We refer to subproblems used in this way as
services, and propose an extension to projections to represent services as a spe-
cial connection domain between subproblems. The extension provides signifi-
cant benefits: verification of the symmetry of the interfaces, exposure of the
machine-to-machine interactions, and prevention of accidental introduction of
shared state. The extension’s usefulness is validated using a case study.

1 Introduction

Architectural considerations often play a part during requirements analysis [4, 9]. For
example, reliability, safety, and performance requirements can push towards or away
from using a distributed architecture, which will most likely have a profound impact
on the specifications derived from the requirements and can provoke changes in the
requirements themselves. For example, a requirement to separately deliver compo-
nents found in a problem can give rise to a form of distributed implementation, e.g. if
the traffic light unit described in [5] was designed along with the lights controller but
also sold as a separate product. Even if the requirements do not ‘force’ a distributed
architecture, one might wish to analyze the requirements of the system as if it would
be distributed, as an aid to predicting architectural consequences of the choices made.

This paper discusses how one might use problem frames [5] to structure and ana-
lyze problems that for whatever reason might have a distributed systems architecture,
as opposed to a distributed software architecture. Problem frames analysis is about
the problem as seen from the world. The problem (the requirement) is stated in terms
of measurable and visible effects the system is to have on the world, not in terms of
objects and classes visible within the software.

The fact that a problem frames analysis always includes the real (physical) do-
mains suggests that the method could better support analysis of a distributed architec-
ture’s influence on requirements, compared to other methods such as KAOS [6] or i*
[8] that do not naturally model the physical domains. In particular, problem frames

analysis always includes a machine, representing the computer that will run the soft-
ware that does the necessary transformations to solve the problem. On the other hand,
it is possible that the machine might represent multiple computers, which would mask
the distributed nature of the architecture. Finally, a problem frames analysis could
create implicit dependencies on state shared between domains (e.g. between com-
puters), something that should not be permitted in a distributed architecture. This
paper proposes an extension to problem frames to resolve these difficulties.

The remainder of the paper is structured as follows. Section 2 presents an over-
view of problem frames. Section 3 elaborates upon the difficulties briefly presented
above, and describes the proposed extension. Section 4 presents a case study to vali-
date the extension: a lighting control system which is an expanded version of the
example in [2]1. Section 5 discusses the lessons learned from the case study, and
section 6 concludes.

2 Problem Frames

2.1 Problems & Domains

When using problem frames, problems are analyzed by describing the interaction of
domains that exist in the world. The problem frames notation captures domains in a
problem along with the interconnections between them. For example, assume that the
requirements elicitation process for an automatic door produces the requirement when
a door-open button is pushed, the door shall be opened for 30 seconds. The require-
ment states the problem – what is expected to happen in the world, when.

Figure 1 illustrates one set of domains that could satisfy the requirement: a basic
automatic door system with three domains, two of which are given and one of which
is designed. One given domain is the door mechanism domain, capable of opening
and shutting the door. The second given domain is the one requesting that the door be
opened; this domain includes both the ‘button’ to be pushed and the human pushing
the button. The designed domain is the machine, the domain that will bridge the gap
between the other two domains in order to fulfill the requirement that the door open
when the button is pushed. The oval presents the requirement to be satisfied. The text
in the ‘folded paper’ boxes presents the frame argument, arguing how and why the
requirement is satisfied.

Every domain has interfaces, which are defined by the phenomena visible to other
domains. Phenomena (e.g. events and signals) are visible: they can be observed. The
notation shows the phenomena shared between two domains by labeling the line
between the domains, then using that label in a box listing the phenomena. Phenom-
ena are listed by indicating the domain controlling the phenomena (the letters before
the ‘!’) followed by a list of phenomena within ‘{‘ … ‘}’ characters. In Figure 1, we
see that the Person + Button domain (PB) controls the event phenomena buttonDown

1 Although developed independently, the scenario resembles one found in [10]. The major

differences are multiple control interfaces, incorporation of security requirements, and dy-
namic definition of ‘rooms’ for control purposes.

and buttonUp. The Door Control Machine (DCM) controls the Boolean phenomena
motorOpen and motorClose (turn on and off the motor, set its direction) on the inter-
face between the machine and the Door Mechanism (DM). DM controls the Boolean
phenomena doorIsOpen and doorIsClosed.

Requirements are optative, describing desired behavior instead of existing behav-
ior [5]. Descriptions of the actual behavior of given domains (their phenomena: in-
puts, outputs, and states visible at their interfaces) are indicative; they describe an
“objective truth” about the behavior of the domain. Indicative domain properties are
normally expected to be constant, e.g. the same stimulus in the same context produces
the same response. Consider the pushbutton in the domain shown in Figure 1; when
the button is pushed, the circuit connected to the button is closed. Putting aside safety
and security concerns, we can say that regardless of the state of the system, pushing
the button will cause the phenomena to appear on the interface.

Descriptions of the desired behavior of designed domains are optative. As the ma-
chine is considered a designed domain, the descriptions of phenomena controlled by
it are optative. They describe characteristics that the requirements engineer desires to
be true. The job of the software engineers is to produce software that converts these
descriptions from optative to indicative. When all phenomena in a system are indica-
tive (and again putting aside many concerns such as safety, security, initialization,
and the like), the system is complete.

2.2 Requirements and Specifications

According to Zave and Jackson [11], a requirement is an optative description of what
the system is to do. Requirements describe a desired effect, or a goal. Jackson [5]
describes a requirement as “the effects in the problem domain that […] the machine is
to guarantee.” KAOS [6] defines requirements in terms of agents : a goal is “an ob-
jective the system under consideration should achieve”, and a requirement is a goal
that can be achieved by a single software agent [7]. The i* framework definition that
does not go quite as far: goals model the intentions of stakeholders [8].

Again referring to Zave & Jackson, specifications are about phenomena. The
specification of a domain is a description of its behavior in terms of the phenomena,

Door
Control

Machine

1. When the
person pushes

the button

3. satisfying the
requirement

2. the door is opened,
thirty seconds passes,
then the door is closed

Person +
Button

Door
Mechanism

C

C

Open door for 30
seconds when
button pushed

a

a: DCM!{motorOpen,
 motorClose,
 motorOff} b DM!{doorIsOpen,
 doorIsClosed}

b: PB!{buttonDown,
 buttonUp}

Figure 1. Basic Problem Frames Diagram

indicative and optative, visible at its interface. The specification of a system is the
collection of domain specifications that together fulfill the requirement(s).

The distinction between requirement and specification is an important one. The re-
quirement described the effect desired in the world. The specification describes the
interplay of phenomena that will achieve the desired effect.

2.3 Problems, Subproblems, the Context, and Projections

All but the most trivial problems will have multiple requirements. Using problem
frames, the analyst proceeds by separating, decomposing, and composing require-
ments until the individual requirements each fit within a problem class. Each re-
quirement is described using an appropriate problem frame class; these are called
subproblems. A context diagram summarizes all the subproblem diagrams, showing
the domains in the union of the subproblems and the interfaces the domains share.

Each subproblem is a projection of the context. All domains in the context re-
quired to describe a subproblem must appear in the projection; the domains in the
context projection represent the world as seen by that subproblem. In some cases
multiple domains in the context are projected as a single domain in a subproblem.
Domains that are designed in one subproblem appear as given domains in another.

Projections of the context (discussed at length in [5] and briefly but more formally
in [3]) are very similar to projections in relational databases [1]. A projection of a
relational database table is a new table containing a (potentially improper) subset of
columns, and a projection of a problem context is a new context containing a subset
of the domains in the problem. The context of a subproblem is a projection of the
context of the problem, limiting the domains and/or phenomena in the subproblem to
those needed to describe the subproblem.

3 Problem Frames & Distributed Architectures

In problem frames, one effect of choosing a distributed architecture is that machines
in different subproblems (projections) may in fact represent different physical ma-
chines. These machines can communicate with each other (share an interface), result-
ing in visible shared phenomena. Although they might appear as the machine domain
in the context, they must be treated as separate domains for analysis purposes.

To detect this situation, one must identify the potential units of distribution. Each
unit of distribution will be represented by at least one problem frame diagram (a pro-
jection of the context) showing the machine for that unit of distribution as a machine
domain. Other units of distribution that participate in the analysis appear as causal
domains in this projection. We say that the subproblem being designed is using the
unit of distribution being projected as a causal domain. The subproblem (SP) being
designed is called the userSP and the subproblem being used is called the usedSP.

Figure 2 presents an example of a small distributed system, a heating control sys-
tem similar to the one described in [5]. It measures inside and outside air & water
temperatures to anticipate the correct water temperature required to maintain the room

at the desired temperature. There are two subproblems, one representing the boiler
controller and the other the heat control function of the room thermostat(s). The
thermostat subproblem Maintain Room Temperature (the userSP), uses a projection to
represent the furnace controller subproblem Operate Boiler Safely (the usedSP) to
supply water at the needed temperature. Maintain Room Temperature does not care
how the furnace is controlled. It wants heated water, and controls the heatTo(temp)
phenomenon on its interface with Operate Boiler Safely to accomplish that goal.

Similarly, Operate Boiler Safely contains a projection of Maintain Room Tempera-
ture, representing the thermostats problem. One must insert the projection of Maintain
Room Temperature into the subproblem in order to show what triggers the boiler to
supply hot water; the thermostat is part of the boiler’s world. The boiler does not care
why it is delivering hot water or how the decision is made to ask for hot water. It
merely supplies hot water when asked.

The interactions in the example illustrate the specific form of decomposition that
arises when considering distribution. By carefully tracing the phenomena through the
projections, one finds that instead of controlling one of the causal domains in Operate
Boiler Safely, Maintain Room Temperature is controlling the subproblem’s machine.
When such a machine-to-machine interface occurs, we say that userSP is using
usedSP as a service. In the example, Maintain Room Temp is using Operate Boiler
Safely as a service to supply heated water.

Several problems are exposed in the above discussion. One is related to symmetry:
each subproblem contains a projection of the other, but there is nothing that indicates
that the projections are symmetric, or even if they should be. There is nothing in ei-
ther diagram that directly exposes the machine-to-machine nature of the interfaces,
hiding information that is important when considering particular concerns such as

Boiler C a: M!{start,stop}
 B!flameLevel()
 B!chamberTemp()
b: WT!temp()
c: M!{start,stop}
 P!isRunning
d: MR!heatTo()
e: WT!waterTemp()

Subproblem 2 (userSP): Maintain Room Temp

Machine Maintain Room
Temperature

Room Air
Temp
Sensor C

a

b

a: M!heatTo(Temp)
b: RA!airTemp()
c: OA!airTemp()
d: WT!waterTemp()

Outside Air
Temp
Sensor C

c

Operate Boiler
Safely C

Figure 2. Heat control system as subproblems

Subproblem 1 (usedSP): Operate Boiler Safely

Machine

Pump C

Operate
Boiler Safely

Maintain Room
Temperature

Water Temp
Sensor

C

b
c

C a

d
e

Water Temp
Sensor

C

d

interference, concurrency, and initialization [5]. Causal domains, (e.g. ‘Water Temp
sensor’), appear in multiple subproblems, potentially introducing shared state and
thereby preventing distribution in the recomposed solution.

These difficulties can be resolved by inserting a connection pseudo-domain into
both projections, making the connections between userSP and usedSP explicit and
symmetric. The inserted domain is a pseudo-domain because it is fictitious, not repre-
senting something physical in the problem. It is a connection domain because it repre-
sents the point through which users of a service connect to the subproblem supplying
the service. When inserted into a userSP, the pseudo-domain represents the projection
of the domains a subproblem supplying a service intends to make visible (the ma-
chine and possibly some other domains). When inserted into a usedSP, the pseudo-
domain represents the projection of the subproblems requesting the service. We give
these connection pseudo-domains the name projection domains.

To better support validation of symmetry, we propose a strict definition/reference
relationship between the one subproblem that defines the service and subproblem(s)
that use the service. A defining occurrence is a projection domain in the subproblem
that provides the service (the usedSP, Operate Boiler Safely in Figure 2). Within the
usedSP, the defining occurrence represents all the subproblems that use the service. It
acts as a causal domain within the subproblem. The phenomena on its interfaces are
the phenomena made available by the service to the userSPs and phenomena that the
service expects the userSPs to control.

When a subproblem uses the service, the subproblem contains a using occurrence
projection domain. The using occurrence acts as a causal domain within the using
subproblem. It has the same phenomena on its interfaces as the defining occurrence.

There are two properties that must be preserved between a using occurrence and
its defining occurrence. The first is completeness: all phenomena appearing on an
interface of the using occurrence must appear on an interface of the defining occur-
rence (or perhaps said to be optional, a possibility not further discussed here), and
vice versa. The second is directionality of control of phenomena: all phenomena con-
trolled by the using occurrence must be controlled by a domain on one of the defining
occurrence’s interfaces, and all phenomena controlled by the defining occurrence
must be controlled by some domain sharing an interface with the using occurrence.

A defining occurrence is indicated on the problem frame diagram by a projection
domain with type D (Defining). The defining and using occurrences are connected by
name; the name of the defining occurrence must be unique across the set of subprob-
lems. A using occurrence is indicated by a projection domain with type U (Using).

Figure 3 presents the heating control example from Figure 2 again, this time using
projection domains. A defining occurrence is added to subproblem one, Operate
Boiler Safely. This defining occurrence, Operate Boiler, controls the heatTo phe-
nomenon on the interface between it and the machine. The waterTemp phenomenon
is on the interface between the defining occurrence and the Water Temp domain,
controlled by Water Temp. Subproblem two, Maintain Room Temp, contains a using
occurrence standing for the boiler operation service. The using occurrence is con-
nected by name to the defining occurrence. The using occurrence has the same phe-
nomena on its interface as the defining occurrence, preserving completeness. The

using occurrence controls
the waterTemp phenome-
non and the defining oc-
currence controls the
heatTo phenomenon,
preserving directionality.

The use of projection
domains satisfactorily
resolves the difficulties
listed this section. All
interfaces are completely
symmetric; all the phe-
nomena that a using oc-
currence can use must be
found on an interface on
the defining occurrence
and vice versa, and it is
possible to verify this
symmetry automatically.
Phenomena that might
lead to shared state prob-
lems pass through the
projection domains. The
defining occurrence exposes the machine-to-machine nature of the communication
and indicates that the subproblem is to be considered a unit of distribution.

4 The Lighting Control System Case Study

The lighting control system must conform to the following rough problem statement:
− The system consists of switches and lighting units (lights) associated with a room.

When a switch is actuated, the lights in the room must be turned on or off.
− Switches are up/down momentary contact: up turns the lights on and down turns

the lights off.
− A master control panel must be included, indicating the state of the lighting units

in each room. The indicator on the panel shows green if lights are one, otherwise
the indicator does not glow. The state of the lights can be changed using the panel.

− The control panel and lights in ‘secure rooms’ are to be usable only by people
with an appropriate level of authorization. Users carry an identity card (a prox-
imity badge) that is read by a proximity reader either embedded in or installed
next to a switch. Lack of a card means the person has the lowest level of authori-
zation possible. The system must record who operated the lights in a secured
room. A person who lacks authorization may not change the state of the lights.

− All light on and off actions must be printed on a printer in the control room. If this
printer is not working correctly, an alarm of some kind must be given.

Figure 3. Heat system with projection domains

Subproblem 1: Operate Boiler Safely

Machine

a: M!{start,stop} Boiler C

Pump C

a B!flameLevel()
Operate
Boiler
Safely

 B!chamberTemp()
b: WT!temp() c

WaterTemp
Sensor C

b c: M!{start,stop}
 P!isRunning
d: OB!heatTo(temp)
e: WT!wTemp()

Subproblem 2: Maintain Room Temp

Machine
Maintain Room
Temperature

Room Air
Sensor C

a

b

a: M!heatTo(temp)
 OB!wTemp()
b: RA!airTemp()
c: OA!airTemp

Operate Boiler

Outside Air
Sensor C

c

Operate
Boiler

d

e

D

Defining occurrence
 Using occurrence

U

− The system must monitor
the lighting units. If a light-
ing unit is not in the correct
state (e.g. off when it
should be on, or not re-
sponding at all), the system
must try to correct it. If the
correction fails, the system
must indicate this fact by
changing the indicator on
the master control panel of
the room containing the
failing lighting unit to show
red and logging on the
printer discussed above.

Master Control
Panel

Light units

− Failure of any single com-
ponent in the system shall not affect more than one floor of the building.

4.1 The Light Control Context Diagram

The context diagram must take into consideration several important parts of the prob-
lem that the problem statement does not make explicit. For example, the relationship
between people and badges must be made clear. The badge identifies the person to
the system, and establishes the person’s privileges. The privileges determine whether
the switch actuation is to be honored. Therefore, the person, the badge, and the privi-
leges are important parts of the problem and should be included in the context dia-
gram. After doing so, we have the diagram shown in Figure 4.

The problem statement contains a requirement stipulating that the eventual imple-
mentation must be fault tolerant. Two choices are available: redundancy and distribu-
tion. This analysis will explicitly accommodate distribution.

4.2 Subproblem Diagrams

4.2.1 Initial Thoughts. There is nothing physical that relates a switch to the lights it
controls or to the logical room that contains the lights. Equally, there is nothing
physical that relates a badge reader to a switch or to a room, or relates a badge to a
person. It seems that the notion of room is a unifying concept fundamental to the
problem, and perhaps the problem should be decomposed along that dimension.

Actuating a switch is a request that the state of the lights in a room be changed.
From the user’s point of view (and the switch’s as well), the lights in a room are
treated as a unit. It makes sense, therefore, to incorporate the notion of room into the
switch phenomena along with the up and down phenomena. A method to map
switches and lights to rooms is required. Following this line of reasoning further, it
becomes clear that the badge and privilege determination are separate from the switch

Switches Badge
Readers

Audit
Printer

Audit
Alarm

Machine Privileges

People Badges

Figure 4. The context diagram

actuation. A badge is associated with a person and privilege is associated with a per-
son/room pair, meaning we need another map. We thus end up with the lexical do-
mains People Privileges, Switches Rooms, and Rooms Lights, where the
symbol is read as maps to.

One of the fundamental problems, controlling the lights, seems to be a commanded
behavior problem. People are commanding the lights using the switches and the mas-
ter panel. However, it appears that the master panel presents enough differences from
use of the ‘normal’ switches to justify separating the two into distinct sets of subprob-
lems, Switches & Lights and Master Control Panel.

We must next consider the Audit problem, which responds to the parts of the prob-
lem statement requiring verification that the lights are in the state that they should be.
The last problem is the maintenance of the lexical domains.

Please note: to simplify diagrams, most phenomena are not shown in the subprob-
lem diagrams. Also, frame arguments run clockwise from the requirement oval.

4.2.2 Switches & Lights Problem. Accepting this first analysis, we start by connect-
ing the switches to the lights in the rooms that the switches control. This is a com-
manded behavior problem. The requirement, derived from the system requirements
and roughly stated, is if the user actuates a switch, then the lights in the room(s) as-
sociated with the toggle be put into the state indicated by whether the toggle was
lifted or lowered. Clearly we need to associate both switches with rooms and lights
with rooms. Two lexical domains will be used for this purpose; for this paper we
assume that they will be implemented using a reliable distributed database and do not
further consider their reliability and distribution properties. We also decide to sepa-
rate interpreting the switches from controlling the lights to provide appropriate units
of distribution to meet the reliability requirement. The solution would seem straight-
forward, except that we must account for security.

The security requirement is, again roughly stated, if a room is secured, then only
people with the appropriate permission can cause a state change in the lights. People
are identified by badges. Unfortunately, badges do not indicate who is in a room, but
instead indicate who is near a reader. We can reduce the complexity of determining
who is ‘in’ a room by introducing a model that uses badge reader events to maintain a
database of who is ‘in’ a
room. This model will be, in
effect, the interface between
the lights control problem
and the badge reader prob-
lem. Enter and exit events
generated by the badge
reader give the information
needed to build the model.
A person is considered ‘in’ a
room and able to control a
room between enter and exit
events. The model is used
by other subproblems that

When a badge enters or
exits the reader’s range

and the reader is associ-
ated with a room

and the
badge is

associated
with a person

satisfying the
requirement

then mark the person as
able to control the room

Badge
Reader C

Machine

Badge
Room X

Badge
Person X

Person
Room X

Maintain
Person Room

Model

Figure 5. Building the person room model

When a switch in a
room is actuated

and the room is not
secure or a person is

in the room

and is author-
ized in that

room

satisfying the
requirement

then the opera-
tion is permitted,

Pass it on.

Enforce
security D

Machine

Units in
room U

Person
Privs X

Person
Room X

Enforce
Security

Figure 7. Enforce security

a: CL!on(room)
 CL!off(room)
b: M!on(r, p)

M!off(r,p)

a

b

verify permissions and en-
force security.

Following this route, we
find we have two subprob-
lems, one to build the Per-
son Room model and one
(or more) to use it. Figure 5
presents the first subproblem
– constructing the model.

We now turn to the sub-
problems to control the
lights. The first subproblem,
named Honor Switches and
shown in Figure 6, watches
for switch events, determines
which room is being con-
trolled, and then passes appropriate events to a subproblem that verifies security. To
ensure that the subproblems are separable and distributable, the controlled domain is
a service, indicated by the using occurrence named Enforce Security, (see below).
The phenomena passed to Enforce Security are shown on the diagrams; they are
on(room) and off(room). Note: Figure 6 show a notational convenience used
throughout this paper: names of projection domains are shown in italics as well as by
their definition-type letter (D or R).

Figure 7 shows the required behavior problem Enforce Security that Honor
Switches uses as a service. Enforce Security accepts the on and off phenomena pro-
duced by Honor Switches, then checks to see if the room is secure. If the room is
secured (it is in the Person Room model, perhaps with no people in it) then verifies
that at least one person near a panel for the room is permitted to control the lights for
that room. If permitted or if the room is not secured, it passes the events along
through the using occurrence Units in room, defined in Control Units in Room (Figure
8). The phenomena passed along are of the form on(room, person) and off(room,
person).

We end with the diagram
in Figure 8, Control Units in
Room where the defining
occurrence Units in room is
found. This is a commanded
behavior problem, looking
up which lights are associ-
ated with the room and con-
trolling them appropriately.
It informs the Maintain MP
Indicators subproblem (dis-
cussed in the next section)
what it did using the service

Machine

Figure 6. Honor switches – lights control with security

Enforce
security U

Switches

C

Switch
Room X

Honor
switches

When a switch is
actuated

and if the
switch is

associated
with a
room

then the
security

subproblem
is told to

change the
state of the

lights

satisfying the
requirement

a

a: M!on(room)
 M!off(room
)

indicated by the using occur-
rence Set MP indicator.

4.2.3 The Master Control
Panel. The Master Control
Panel problem is decom-
posed into three subprob-
lems. The first, shown in
Figure 9, is an information
display problem in which the
indicators are set appropri-
ately and the audit trail is
maintained. It contains the
defining occurrence Set MP
indicator through which it
accepts on and off phenom-
ena from the Control Units in
Room subproblem.

The second subproblem
concerns controlling the
lighting units using the mas-
ter panel. Shown in Figure
10, it is a commanded behav-
ior problem where pushing a
button associated with a
room inverts the state of the
lights in that room. It uses
the service represented by the
using occurrence Units in
room (see Figure 8) to con-
trol the lights.

The third subproblem is
concerned with master panel
security, and is a required
behavior problem. As this
subproblem is almost identi-
cal to the Enforce Security
problem presented in Figure
6, the subproblem will not be
further discussed.

4.2.4 The Audit Subprob-
lems. The Audit problem is
decomposed into two infor-
mation display subproblems
and one commanded behav-

Machine

Figure 10. Master control panel buttons

Units in room

U

MP But-
tons C

Button
Room X

MP Control
Buttons

When the state of lights
in a room is set

the room
controlled

by that
button is

determined

then the
lights are

inverted as
indicated by

the state

satisfying the
requirement

Room
Light state X

Machine

Figure 9. Control units in room

Light
units C

Units in
room

D

Room
Light units X

Control Units
in Room

When lights in a room
are to be changed

and there
are light-
ing units

in the
room

then the
lighting units

and MP
indicators are

set to the
appropriate

state

satisfying the
requirement

Set MP
 indicator

U

a

a: UR!on(r, p)
 UR!off(r,p)

Machine

Figure 8. Master control panel

Indicators
on Panel C

Set MP
indicator

D

Room
Indicator X

Maintain MP
Indicators &

Audit

When the state of lights
in a room is set

the indica-
tor for that

room is
determined

and turned
on or off,
while re-

cording the
state and
auditing

satisfying the
requirement

Room
Light state X

Audit U

ior subproblem. The first
information display sub-
problem, Audit lights unit
shown in Figure 11, scans
the lights in each room to
determine if they are in the
proper state. The fault indi-
cator on the MP is lit via the
projection domain MP fault
indicator if a unit is not in
the correct state.

The information display
subproblem containing the
defining occurrence MP
fault indicator is similar to
Figure 9, as is the subprob-
lem defining the projection domain Audit. These subproblems are not further dis-
cussed.

The job of the commanded behavior problem is to put the lights into the state they
should be in. It is identical to the information display problem in Figure 11, except
that it would use the service represented using occurrence Units in room, defined in
Figure 8.

4.2.5 The Lexical Domains. Several lexical domains have been used in the above
diagrams. The creation and maintenance of each of these is described by a simple
workpieces problem frame. The subproblems are all very similar and have solutions
well described in [5], and they won’t be further discussed.

5 Discussion

There are several issues that were not resolved by the use of projection domains in by
case study. Some of these derive from the particular concerns discussed in [5].

5.1 Distribution

This paper argues that projection domains help with ensuring that a system can be
distributed, and the case study supports this assertion. There are, however, some cases
where projection domains are not sufficient. For example, the existence of hidden
shared state could force merging. A similar question must be asked about lexical
domains to determine if they can be used in a distributed fashion (for example as a
distributed database).

As problem frames phenomena are considered ‘shared’, one could argue that dis-
tribution is never allowed because it breaks the simultaneity assumptions of problem
frames analysis. Ignored connection domains create similar difficulties. For example,
guards to be evaluated in one subproblem could be added to events in another sub-

Machine

Figure 11. Audit light units

MP fault
indicator U

Room
Lights C

Room
Light state X

Audit Light
Units

Determine which rooms
have lights

and the
state the

lights
should be in

then verify
that the

lights are in
that state. If
not, signal a

fault

satisfying the
requirement

Light units

C

problem, creating an implicit connection domain – the guard itself. Use of projection
domains does not facilitate or prevent such uses of guards.

It would be very nice to have a better understanding of, and a way to specify, the
cases that force merging of the machines. Indicating the simultaneity and concurrency
assumptions at an interface would help enormously.

Projection domains assist with determining whether distribution is acceptable by
specifying the interface between a defining occurrence and its using occurrences.
Indicating the cardinality at these interfaces as described in [2] would provide more
information, as cardinalities other than 1:1 imply that some support for concurrency
and distribution was intended by the analyst.

5.2 Concurrency

Concurrency problems exist on at least two levels. The first is rather large, exempli-
fied by lexical domains and models. There is an inherent concurrency problem be-
tween a machine that maintains a lexical domain and a machine that uses it. The prob-
lem manifests itself as inconsistent or partial state. It would seem that this sort of
problem is amenable to solution, at least at the phenomena level, by applying transac-
tion semantics to the phenomena.

The second level can be illustrated by looking at the example presented in this pa-
per. It is perfectly permissible to have multiple switches for the same room. The
switches and lights in a room might not be controlled by the same computer, leading
to potential race conditions as the switches are actuated. Clearly the nature and sever-
ity of the concurrency problems depend on how the system is distributed.

5.3 Initialization

Projection domains do not directly solve initialization concerns related to distributed
systems. Some of these initialization concerns might be:

5.3.1 What about partial power failures, where parts of the system lose power
and parts do not? There are several sub-questions that might arise while discussing
this point. Does a partial power failure trigger a safety concern? Can power be lost to
parts of the control system, and if so what is to occur while power is lost and when
power is restored? The problem is complicated by use of a distributed implementa-
tion, as different parts of the system could be ‘off’ at any given time.

5.3.2 The audit process cannot run until system is initialized. This is an example
of initialization sequencing. The audit system depends on having the various lexical
domains correctly initialized and the lights in a known state. The point after which
auditing can start must be determined, then a required behavior problem frame must
be added to express the requirement.

5.3.3 Lights added to a room may be in an incorrect state. A maintenance engi-
neer may repair or replace a lighting unit while the system is running. Doing so raises
concurrency concerns (maintenance of the lexical domains), correctness concerns (the

newly installed light is off when it should be on and vice versa), identities concerns
(movement of units from another room), etc.

5.4 Identities

There are many identities concerns. Most of them are recognized by the inclusion of
the lexical domains (the maps). Some, however, cannot be satisfied with the do-
mains. For example, a switch might be added to the system a long time before it is
associated with room. Similarly, a lamp might be added long before it is associated
with a room. Badge readers present a similar problem, as does maintaining the corre-
spondence between badges and people.

Another identities concern that will provoke changes to the solution comes from
the assumption that switches are in rooms and badge readers are in rooms, therefore
someone in the room is actuating a switch. This assertion is clearly incorrect if multi-
ple badge reader/switch pairs are associated with a room. We can confuse the identity
of a person at the switch with a person at another switch for the same room. The solu-
tion is to map both badges and switches to a pair (room, location) instead of to room.
The diagram in Figure 5 would be changed to build a Person at Location model. The
diagram in Figure 10 would be changed to use the Person at Location model. Finally,
the diagram in Figure 6 would be changed to use a Switches Rooms/Location map.

5.5 Interference

There are interference or concurrency questions that projection domains do not auto-
matically answer. For example, without care the Audit machine can busily undo Honor
Switches actions. Interactions between the audit information display and audit setting
the correct light state could make panel indicators flash. If two switches control the
same room and one switch commands off while the other commands on, individual
lights could be left in conflicting states. Inconsistent states while maintaining the
lexical domains is another source of errors.

6 Conclusions

The case study showed that projection domains help with modeling machine to ma-
chine interfaces, something that is necessary when a system’s implementation is to be
distributed. Projection domains helped keep the subproblems focused while specify-
ing how the subproblems interact. They preserved completeness and directionality,
providing a way to verify that all phenomena used and controlled by the defining
subproblem were controlled and used by the using subproblem(s), and vice versa.
They better encapsulated the service, as the phenomena visible at the projection’s
interface were defined by the defining occurrence and not by the subproblem using
the service. They also provided a form of continuous composition by specifying the
interface between a defining occurrence and its using occurrence(s).

Although projection domains resolved some problems encountered when model-
ing distributed systems, the case study showed that more remain. Future work will
focus on ensuring consistent use of lexical domains by multiple subproblems, verify-

ing the semantics of shared phenomena and their parameters, and describing and
verifying the concurrency properties of domains and subproblems.

The extension proposed in this paper could be helpful during decomposition even
when the result will not be distributed. For example, analysts working on different
subproblems may wish to formalize how the subproblems are composed, to ‘pre-
declare’ projections, and to reduce the number of domains included a projection by
combining them into a single projection domain.

Acknowledgements

The financial support of the Leverhulme Trust is gratefully acknowledged. We also
thank Michael Jackson for his highly pertinent comments, criticism, and help. Finally,
we thank the anonymous reviewers for their very helpful criticism.

This paper is a substantially revised version of a paper presented at the 1st Interna-
tional Workshop on Advances and Applications of Problem Frames (IWAAPF’04).
Copyright of this earlier version is retained by the authors.

References

[1] Connolly, T., Begg, C., Strachan, A.: Database Systems: A Practical Approach to De-

sign, Implementation, and Management. Second ed.: Addison-Wesley, 1998.
[2] Haley, C.B.: Using Problem Frames with Distributed Architectures: A Case for Cardinal-

ity on Interfaces. In The Second International Software Requirements to Architectures
Workshop (STRAW'03) at the International Conference on Software Engineering (ICSE
'03), Portland OR USA, 9 May 2003.

[3] Hall, J.G., Rapanotti, L.: Towards a Semantics of Problem Frames. Technical Report
2003/05, Department of Computing, The Open University, Milton Keynes UK, 2003.

[4] Hall, J.G., Rapanotti, L.: Problem Frames for Socio-Technical Systems. In Requirements
Engineering for Socio-Technical Systems, J. L. Maté and A. Silva, Eds., Hershey PA
USA: Idea Group Inc., 2004.

[5] Jackson, M.: Problem Frames. Addison Wesley, 2001.
[6] van Lamsweerde, A.: Goal-oriented Requirements Engineering: A Guided Tour. In Pro-

ceedings of the Fifth IEEE International Symposium on Requirements Engineering
(RE'01), Toronto, Canada: IEEE Computer Society Press, 27-31 Aug 2001, pp. 249-263.

[7] van Lamsweerde, A.: Elaborating Security Requirements by Construction of Intentional
Anti-Models. In Proceedings of ICSE'04, Edinburgh Scotland, 26-28 May 2004.

[8] Liu, L., Yu, E., Mylopoulos, J.: Security and Privacy Requirements Analysis Within a
Social Setting. In Proceedings of the 11th IEEE International Requirements Engineering
Conference (RE'03), Monteray Bay, CA USA, 8-12 Sept 2003.

[9] Nuseibeh, B.: Weaving Together Requirements and Architectures. Computer (IEEE),
34(3) (Mar 2001), 115-117.

[10] Queins, S., Zimmermann, G., Becker, M., Kronenburg, M., Peper, C., Merz, R., Schäfer,
J.: The Light Control Case Study: Problem Description. Journal of Universal Computer
Science, 6(7) (Jul 2000), 586-596.

[11] Zave, P., Jackson, M.: Four Dark Corners of Requirements Engineering. Transactions on
Software Engineering and Methodology (ACM), 6(1) (Jan 1997), 1-30.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

