Requirements Eng (2006) 11: 138-151
DOI 10.1007/s00766-005-0023-4

ORIGINAL ARTICLE

Charles B. Haley - Robin C. Laney
Jonathan D. Moffett - Bashar Nuseibeh

Using trust assumptions with security requirements

Received: 25 July 2005/ Accepted: 28 July 2005 / Published online: 13 December 2005

© Springer-Verlag London Limited 2005

Abstract Assumptions are frequently made during
requirements analysis of a system about the trustwor-
thiness of its various components (including human
components). These trust assumptions, whether implicit
or explicit, affect the scope of the analysis, derivation of
security requirements, and in some cases how function-
ality is realized. This paper presents trust assumptions in
the context of analysis of security requirements. A run-
ning example shows how trust assumptions can be used
by a requirements engineer to help define and limit the
scope of analysis and to document the decisions made
during the process. The paper concludes with a case
study examining the impact of trust assumptions on
software that uses the secure electronic transaction
specification.

1 Introduction

An important constituent of a system’s requirements is
its security requirements. Security requirements arise be-
cause stakeholders assert that some objects, be they
tangible (e.g., cash) or intangible (e.g., information and
state), have direct or indirect value. Objects valued in this
way are called assets [1], and the stakeholders naturally
wish to protect these assets from harm. For example,
tangible assets might be destroyed, stolen, or modified;
information assets might be destroyed, revealed, or
modified; and state might be modified, revealed, or dis-
puted (this list is not exhaustive). An asset can also be
used to cause indirect harm, such as to reputation.

C. B. Haley () - R. C. Laney - J. D. Moffett - B. Nuseibeh
Department of Computing, The Open University, Walton Hall,
MK7 6AA Milton Keynes, UK

E-mail: C.B.Haley@open.ac.uk

E-mail: R.C.Laney@open.ac.uk

E-mail: J.Moffett@open.ac.uk

E-mail: B.Nuseibeh@open.ac.uk

Security requirements are used to restrict the number of
cases wherein these undesirable outcomes can take place,
and should be elicited and enumerated during a
requirements engineering process.

One definition of requirements engineering is that it is
“concerned with the real-world goals for functions of
and constraints on software systems’ [2]. This definition
is interesting because it firmly places requirements
engineering in the world, as opposed to in the software.
Two additional definitions extend this first definition,
stating that requirements engineering is about systems in
the world: “‘requirements engineering is concerned with
the identification of the goals to be achieved by the
envisioned system” [3], and ‘“‘requirements definition is
the task of gathering all of the relevant information to be
used in understanding a problem situation prior to sys-
tem development™ [4]. The extension is significant. A
system comprises not only software, but also all the di-
verse constituents needed for it to achieve its purpose.
For example, a computing system clearly includes the
computers, but also incorporates real-world elements
such as the people who will use, maintain, and depend
on the system; the physical and logical environment
within which the system will exist; and any systems al-
ready in place.

Extending requirements engineering from the soft-
ware to include the system is very significant to security.
When considering security, all of the elements in a sys-
tem participate, and therefore production of security
requirements demands a system-level analysis [5-7]. If
the requirements engineer considers only the software,
he or she is limited to production of general goals of the
form X must not occur. Nothing can be said about how
such goals are satisfied, or even if they can be satisfied,
as the requirements engineer cannot analyze interactions
between the software and unknowns.

When operating in a systems context, the require-
ments engineer must determine which real-world ele-
ments are to be included in the analysis. An extreme view
is that every atom in the universe is part of every system,
and therefore the analysis must include everything made

of atoms. As this is clearly impractical, the analyst must
define the context within which requirements analysis
takes place by selecting the domains (the aforementioned
real-world constituents) that are considered pertinent [8,
9]. In doing so, the analyst reduces the size of the context
to those domains relevant to the problem.

One factor influencing an analyst’s choice about
whether or not a domain is relevant to a system’s secu-
rity, and therefore to be included in the context, is the
analyst’s set of trust assumptions [10]. Trust assumptions
are explicit or implicit choices to trust some character-
istics of domains. These assumptions can have a signif-
icant impact on the security of a system. For example,
most analysts implicitly assume that the compiler is not
a security risk; it would never occur to them to include it
in the analysis. Thompson demonstrated that this
assumption is not necessarily justified by showing how a
compiler could introduce trapdoors into applications
[11]. Viega et al. [10] say in that “application providers
often assume that their code will execute in a non-hostile
environment”’, and then show how this assumption leads
to security breaches by using an example of hiding ‘se-
crets’ in code where the secrets are not truly hidden.
These two examples illustrate how the requirements
engineer’s implicit trust of some domains in the envi-
ronment can introduce unknown amounts of risk into
the system. Viega et al. went as far as to say “without
recognizing all the entities and their trust relationships in
a software system during the requirements phase of a
project, that project is doomed from the start.”

Although the above examples demonstrate the need
to capture and analyze trust assumptions, little work has
been done exploring how to find, represent, and quantify
them; and then to analyze their effect on the system
under discussion. The contribution of this work is a first
step toward correcting this lack, investigating trust
assumptions within the framework of representing secu-
rity requirements as constraints on a system’s function-
ality [7], using problem frames [9] to describe the system
context, and threat descriptions [12] to represent threats.

The remainder paper is organized as follows. Section
2 provides some background material on problem
frames. Section 3 discusses security requirements, Sect. 4
describes trust assumptions, and Sect. 5 presents some
examples. Section 6 describes a case study, Sect. 7 pre-
sents related work, and Sect. 8 concludes.

2 Problem frames

The view of requirements exemplified by problem frames
[9] is that a system is intended to solve a problem in a
context of real-world physical domains, where the context
includes system design decisions. One uses problem
frames to analyze the problem in terms of the context
and the design decisions the context represents. The
context contains domains, which are physical elements
around which the system (not just the software) will be
built. The problem frames approach differs from some

139

other approaches (e.g., KAOS [13]) that hold that a
requirements engineer should reason about a system’s
characteristics without using a physical model of the
world; under this view, a requirements engineer enu-
merates goals for a system under consideration and
produces a temporal logic model of the system’s desired
behavior. We will show how using the real-world system
perspective provided by problem frames assists with the
determination of security requirements.

In the problem frames universe, all computing
problems involve the interaction between domains in the
world. Domains are tangible (e.g., people, equipment,
networks) but may contain intangibles (e.g., informa-
tion). Every domain has interfaces, which are defined by
the phenomena visible to other domains. Descriptions of
phenomena of given (existing) domains are indicative;
the phenomena and resulting behavior can be observed.
Descriptions of phenomena of designed domains (do-
mains to be built as part of the solution) are optative;
one hopes to observe the phenomena in the future.

One special domain is the machine; the domain that
performs the transformations to satisfy the requirement.
The interplay of phenomena between the machine and
its connected domains defines what the machine has to
work with to satisfy the requirement. The interplay of
phenomena is a specification, describing how the
requirements are satisfied [14]. The difference between
specification and requirement is important. A specifica-
tion is an expression of the behavior of phenomena
visible at the boundary of the domains, whereas a
requirement is a description of the problem to be solved.
For example, in the context of a building we might find
the requirements ‘permit passage from one room to
another’ and ‘physically separate rooms when possible’.
Clearly the problem involves something like doors.
Equally as clearly, it does not specify that doors be used,
nor does it specify internal phenomena or behavior. It is
up to the designer (the architect in this case) to choose
the ‘door’ domain(s) for the system. One might satisfy
the requirement with a blanket, an automatic door, a
futuristic iris, or a garden maze. Each domain imple-
mentation presents different phenomena at its bound-
aries (i.e., they work differently), and the resulting
system specification must consider these differences.
However, the requirement does not change.

There are two fundamental diagram types in a
problem frames analysis, context diagrams and problem
diagrams. A context diagram shows the domains of
interest in a system, how the domains are intercon-
nected, and optionally the phenomena on the interfaces
between domains. A problem diagram is used to de-
scribe a problem in the system; the problem is expressed
by a requirement. The problem diagram is a projection
of the context, showing only the domains or groups of
domains of interest to the particular problem. A problem

frame diagram is a kind of problem diagram that

describes the problem as one of a known set of problem
classes, showing how a given requirement is to be sat-
isfied using the pattern that the problem class represents.

140

We use only context diagrams and problem diagrams
in this paper. We do not (yet) make use of problem
classes. Doing so is a subject of future investigation.

Figure 1 shows a context diagram for a system that
will be used as an example in Sects. 3 and 4 of this paper.
The system is a subset of a Human Resources system
having four problems/requirements:

e Salary, personal, and benefits information shall be
able to be entered, changed, and deleted by HR staff.
This information is referred to as payroll information.

e Each employee shall be able to view a subset of his or
her own personal and benefits information.

o Users shall have access to kiosks located at convenient
locations throughout the building and able to display
an ‘address list’ subset of personal information con-
sisting of any employee’s name, office, and work
telephone number.

o At most 24 hours of modifications to information
shall be vulnerable to loss.

The context diagram could be broken down into four
problem diagrams, one for each requirement. In the
interest of brevity, only one of the problem diagrams,
the one for the third requirement, is discussed in this
paper. Figure 2 shows the problem diagram for this
requirement (the ‘address list’ function). Phenomena
have been intentionally omitted. Security will be dis-
cussed starting in Sect. 3.

3 Security requirements

Security requirements are often defined as “‘restrictions
or constraints” placed on system services [15-17]. We
slightly restate this definition: security requirements ex-
press constraints on the behavior of a system sufficient to
satisfy security goals [7]. The constraints are intended to
limit undesired system behavior as much as possible
while still satisfying the system’s requirements. For
example, a goal for an ATM might be provide cash to
customers. This goal is obviously overly broad from a
security point of view. By providing constraints such as

Salary Personal Benefits
Information Information Information
Machine Backup Backup
Device [Media
| |
Display People

Fig. 1 Example context diagram

- S e

4 N

Display [« -- .I’/ Display \‘
Machine ‘\\ address list
Address List| -~ 7
Subset 7
People |-7

Fig. 2 Address list

only if customer physically possesses an ATM card asso-
ciated with the account and only if customer provides the
correct PIN (two security requirements), the circum-
stances under which cash is to be provided are reduced.

Security requirements are added to functional
requirements (requirements that say what the system is
to do) in order to prevent harm through misuse of assets
[7, 12]. An asset is something in the context of the sys-
tem, tangible or not, that is to be protected. A threat is
the potential for abuse of an asset that will cause harm.
A vulnerability is a weakness in the system that an attack
exploits to realize a threat. Security requirements are
constraints on functional requirements, intended to re-
duce the scope of vulnerabilities. Thus, security
requirements stipulate the location and elimination of
vulnerabilities that an attacker can exploit to carry out
threats.

The security community has enumerated some gen-
eral security goals, labeling them with the acronym CIA,
and more recently another A ([18] and other security
textbooks):

e Confidentiality: Ensure that an asset is visible only to
actors authorized to see it. Confidentiality is larger
than ‘prevent read access to a file’. For example, it
includes controlling visibility of a data stream on a
network, and of papers on someone’s desk.

e Integrity: Ensure that the asset is not corrupted.
Integrity is larger than ‘prevent write access to a file’,
for example including ensuring that transactions that
should not occur indeed do not, that the contents of
backup media are not changed, that incorrect entries
in a paper-based accounting system are not made, and
data streams are not modified between their end-
points.

e Availability: Ensure that the asset is readily accessible
to agents that need it. A counterexample is preventing
a company from doing business by denying it access to
something important, such as access to its computer
systems or its offices.

e Authentication: Ensure that the provenance of the
asset or actor is known. A common example is the
simple login. More complicated examples include
mutual authentication (e.g., exchange of cryptography
keys), and intellectual property rights management.

By connecting these general goals to assets, and then
postulating an action that would violate the goal, one
can construct descriptions of possible threats on assets.
These threat descriptions [12] are phrases of the form
performing action X on/to/with asset Y could cause
harm Z. Threat descriptions permit a form of asset-
centered threat modeling, and are represented by a
three-element tuple: the asset, the action that will ex-
ploit the asset, and the subsequent harm. They are
generated by enumerating the assets involved in the
system, then for each asset, listing the actions that
exploit the asset to cause direct or indirect harm. For
example, one can imagine erasing (the action) the
customer records (the asset) of a company to cause loss
of revenue (the harm).

Referring to the HR example presented in Sect. 2,
some possible threat descriptions are:

e Exposing salary data could reduce employee morale,
lowering productivity.

e Changing salary data could increase salary costs,
lowering earnings.

e Exposing addresses (to headhunters) could cause loss
of employees, raising costs.

The requirements engineer examines each context
diagram in the problem (or problem diagram, if they
are available) to see if the asset mentioned in the
threat description is involved in the problem. To be
involved, the asset must be either a domain or con-
tained in a domain, or be found in the phenomena. If
the asset is found, then the requirements engineer
must operationalize the ‘avoid’ goal represented by the
threat description to produce constraints on func-
tionality that ensure that the asset cannot be abused in
the way the threat description requires. These con-
straints are security requirements [7], which, like all
requirements, must be satisfied by the system. They
are satisfied by changes and/or additions to the do-
mains or phenomena, by changing the behavior of the
domains in the context, by requiring specific behavior
of the machine, or by adding trust assumptions
explaining why undesired behavior is believed not to
occur.

Without going into the mechanics of how the secu-
rity requirements are determined (see [12] and [7]),
analysis of Fig. 2 shows that in order to maintain
confidentiality and integrity of the data, a constraint
must be added—only authorized people may see the
data. To satisfy this constraint, the network needs to be
protected and the authorization of users must be veri-
fied. The former, protecting the network, is accom-
plished wusing encryption. The resulting problem
diagram is shown in Fig. 3. The security requirement
has been added to the oval, phenomena have been
added to support encryption, and the encrypted net-
work has been made explicit. The latter, authorization
of users, is discussed in Sect. 5.

141

Display
Information

Alldata(KeyInfData)
M!data(KeyInfData)

Display address \\‘

Machine /

! list info '
Encrypted ' - Only to !

Network \ authorized !

\ people ;

\ /
Address e ///
Info RN P
People

Fig. 3 Address list revisited

4 Trust assumptions

We define a trust assumption as an assumption by a
requirements engineer that, in order to satisfy a security
requirement, the membership or specification of a do-
main can depend on certain properties. The require-
ments engineer trusts the assumption to be true. These
assumed properties or assertions act as domain
restrictions; they restrict the domain in some way that
contributes to the satisfaction of the security require-
ment.

4.1 Purpose of trust assumptions

The requirements engineer is responsible for construct-
ing an argument that security requirements are satis-
fied—the correctness argument described in [7], hereafter
called the satisfaction argument. We prefer the term
‘satisfaction argument’ because it implies a weaker
standard, something appropriate when working with
security. One cannot prove that a system is secure. One
is instead limited to arguing that, in the context of the
system and with information known at that point, the
system is adequately secure.

In many cases, the satisfaction argument cannot be
made without depending on domain properties that
cannot be verified with the information in hand; the
scope of the analysis must be expanded to include any-
thing that the domain in question depends upon. The
requirements engineer has a choice, either to expand the
scope as necessary to verify the properties, which is a
recursive process, or to add a trust assumption that as-
serts that the properties are valid. By choosing the trust
assumption, the requirements engineer ends the recur-
sion and explicitly limits the scope of the analysis.

142

To illustrate this choice, assume the existence of a
security requirement stipulating that the computers
operate for at least 8 h in the event of a power failure (an
availability requirement). The requirements engineer can
satisfy this requirement by adding backup generators to
the system. Appropriate phenomena would be added so
that the machine can detect the power loss, control the
generators, detect going beyond 8 h, etc. In most situa-
tions, the requirements engineer can trust the manufac-
turer of the generators to supply equipment that does
not intentionally permit an attacker to take control of
the generators to prevent them from operating (a denial
of service attack). The analyst trusts the behavior of the
generators, and adds a trust assumption to this effect. By
adding the trust assumption, the requirements engineer
does not need to include the manufacture of the gener-
ators in the analysis. The analyst uses the trust
assumption to limit the scope of the analysis.

As explained above, trust assumptions contribute to the
satisfaction of security requirements. There is not neces-
sarily a one-to-one correspondence between a trust
assumption and the security requirements satisfied. Several
trust assumptions may be necessary to satisfy a security
requirement (an and decomposition), any one of several
trust assumptions may be sufficient to satisfy a security
requirement (an or decomposition), or some combination
of the two. In addition, one trust assumption may play a
role in satisfying multiple security requirements.

4.2 The ‘trust’ in trust assumptions

We use a variant of the definition of trust proposed by
Grandison and Sloman [19]: “[Trust] is the quantified
belief by a trustor with respect to the competence,
honesty, security and dependability of a trustee within a
specified context”. In our case, the requirements engineer
trusts some domain to participate ‘competently and
dependably’ in the satisfaction of a security requirement
in the context of the problem.

In the Grandison and Sloman definition, the quan-
tification of a trust assumption represents a level of
confidence that the trust assumption is valid. Said an-
other way, it represents the risk that including the trust
assumption and thereby limiting the analysis may not be
justified. In our work, the quantification is binary; the
trust assumption is thought to be valid, or it is not.
Taking this restriction into consideration, the variant of
the definition we are using begins with “[Trust] is the []
belief by ...”” (the word quantified is removed).

The Thompson example in Sect. 1 ([11]) gives us an
example of a trust assumption. An analyst’s (probably
implicit) trust of the compiler vendor not to include
trapdoor generators in the compiler may be misplaced. If
the compiler has been compromised, then some number of
vulnerabilities may come into existence, such as the exis-
tence of a universal password, denial-of-service traps, or
information leaks. Successful attacks using these vulner-
abilities will have some impact on the organization: i.e.,

they will cause harm. The organization must decide whe-
ther the risk presented by the vulnerabilities that might
come into existence if the trust assumption is not valid is
sufficient to justify the time and expense of the expansion
of the analysis required to validate the compiler.

The risk presented by a trust assumption is not the
same as the risk presented by a vulnerability. The risk
associated with a vulnerability measures the likelihood
that the vulnerability can be successfully exploited. The
risk in a trust assumption measures how likely it is that
the vulnerability exists as a consequence of the trust
assumption being invalid. As the example in the previ-
ous paragraph shows, the two measures are indepen-
dent. If a compiler has been compromised to modify the
password checker of the login program (the case de-
scribed by Thompson) but the login program is not used
in a system, then the risk presented by the vulnerability
is nil, regardless of the validity of a trust assumption
stating that the compiler vendor can be trusted.

An analysis and discussion of risk analysis is outside the
scope of this paper. However, where appropriate, certain
risk factors are introduced without further justification.

4.3 Representation of trust assumptions

A trust assumption consists of the following informa-
tion:

o Identification of the dependent domain. This is the
domain being restricted by the trust assumption.

o Effect of the trust assumption. The trust assumption
restricts membership of the dependent domain, phe-
nomena on the interfaces of the dependent domain, or
some combination of the two. Note that phenomena
restrictions can be an assertion that some phenomena
will not appear on the interface, or will only occur in a
specific sequence/interchange.

e Narrative description of the restriction(s). If the trust
assumption restricts domain membership, then de-
scribe the membership of the domain before and after
application of the restriction. If the trust assumption
restricts phenomena, then describe the restriction and
its effect, if any, on the valid interplay of phenomena.
When discussing the validity and effect of the restric-
tions in this section, the analyst should take the po-
sition that the trust assumption is valid. The validity
of the trust assumption is examined below.

e Preconditions. Some trust assumptions may be valid
only if some other conditions are true. Some examples
might be the earlier application of some other trust
assumption to the dependent domain and/or the exis-
tence of domains not otherwise included in the analysis.

e Justification for the inclusion of the trust assumption.
This is not a justification of the restrictions, but is
instead an informal discussion of why the trust
assumption should be considered valid. If there are
risks associated with the trust assumption, they should
be listed and discussed.

o List of security requirements (the constraints) that this
trust assumption satisfies partially or completely. If
the trust assumption is part of an and or an or
decomposition, its siblings should be listed.

Diagrammatically, a trust assumption is represented by
an arc from the dependent domain to an oval containing
a short summary of the properties being depended upon.

5 Examples of trust assumptions

Returning to the example begun in Sect. 3, trust
assumptions must be added to the diagram in order to
complete the picture. For example, the analysis does not
explain why the encrypted network is considered secure
or how address information is to be protected. We must
also determine whether a user is authorized to see the
information. We look at two cases: using authentication
and using the building’s physical security.

5.1 Using authentication

Authentication is a system-level problem involving
many potentially complex processes. In order to derive
requirements for authentication, the requirements engi-
neer must understand how users are to be authenticated,
perhaps based on cost, risk, and ease-of-use factors. In
many cases, the decision is imposed by the IT organi-
zation. In other cases, the stakeholders will insist on a
particular method. Regardless of where the decision
comes from, the phenomena involved must be added to
the problem diagram.

Figure 4 presents a login and password solution,
along with some trust assumptions related to authenti-
cation and to protection of access to data. The require-
ments engineer is convinced by the IT organization that
the encryption system is strong, and decides that the
encrypted network connection domain does not require
further analysis. TA1.1 is added to document this deci-
sion. TA1.4 is added to document accepting that the key

143

system tells the data server the access level of the client
machine; the behavior of the server is constrained to re-
fuse to supply information above the access level indi-
cated by the keys. TA1.2 indicates that the requirements
engineer chooses to trust the systems administrators to
properly manage access credentials, constraining the
domain to contain accurate information.

Finally, the engineer assumes that employees will
keep their credentials confidential (TA1.3), constraining
the ‘people’ domain to be ‘people with their own cre-
dentials’. We expand this trust assumption to include the
information listed in Sect. 4.3.

e The dependent domain: People.

e Effect: The People domain is restricted to contain
individuals who are using their own credentials.

e Explanation: Before the restriction, the people domain
can contain individuals who have credentials that may
or may not have been allocated to them. After appli-
cation of the restriction, the people domain can con-
tain only individuals who have credentials allocated to
them and who are using their own credentials.

e Preconditions: This trust assumption depends on
TA1.2—that administrators will not expose one
person’s credentials to another person.

e Justification: The employees of this company are all
stockholders who stand to benefit greatly from the
success of the company, and therefore will respect the
security rules out of self interest. The employees are
also all security experts who understand at a visceral
level the reasons for keeping credentials private. For
these reasons we assume that they will not expose their
credentials, either accidentally or intentionally.

e Security requirements partially satisfied: Address
information shall be restricted to employees.

5.2 Example: using building security

The login/password scheme may be unacceptable to the
customer. The IT department may refuse, saying that
giving all employees authentication information would
be too costly. The stakeholders may refuse, insisting that

Fig. 4 Address list with
authentication

 / ~

Display
Information [€.

Machine

Al!data(KeyInfData)
M!data(KeyInfData)

Encrypted
Network

Address

plus Authentication

-/‘

Info N,

Authentication

ke Display address list
information

1 - Only to employees

N
\

\
|

. Data Info N ’
- SN e
/ - P!credentials (name, pw) \ Se~el__---7
. McredentialsRefused e .
plus application phenomena S People |~ \
\
A/ 7 -

- ; . Z
* TTALLIT Admin. ™ . “TA12: 1T Admin: *

= .

TA1.3: People: \‘ '/ TA1.4: 1T \

(Encryption is strong \ correct Credentials kept Admin: domains
.. administration . private aresecure
\'-__.-/ .\-._-‘/ \'-_--/‘ ..\.."‘

144

Fig. 5 Address list with door
security Display
// Information ¥ _
Machine Alldata(KeyInfData) EI\rllcryptekd Addfess -~ hhag Display address list\ AN
M!data(KeyInfData) etworl Info N . - information \
- | - Only to employees .
. \\ ’
[7 : —
Y i N
‘/'-—-§.\ .-/-. - -~. LT
©7 TA2.LIT Admin: ,* TA2.2: Building Security: * 7 oTazzar N,
(Encryption is strong.) . Only employgeg can enter " Admin: domains
. K ~. the building % N\ | aresecure /
.____-‘/ .\.___./ .__/‘

requiring a login would make the system too hard to use.
An alternate solution is to make use of the fact that the
doors of the building are protected by a security guard;
the guard restricts entrance to authorized personnel. The
security manager agrees that the security guard can
stand in for authentication.

Figure 5 presents this alternate solution. Authenti-
cation is removed and trust assumption TA2.2 is added,
having the effect of changing the People domain to
Employees by restricting membership to people allowed
to enter the building by the security system. The
authentication-related trust assumptions are removed. It
is up to the customer to decide if the associated risk
profile is acceptable.

The details of TA2.2 are:'

e The dependent domain: Employees.

e The effect: The original People domain is restricted to
contain Employees.

e Explanation: Before the restriction, the people domain
contains individuals, whether or not they can actually
enter the building. After application of the restriction,
the people domain contains only employees, the per-
mitted occupants of the building.

e Preconditions. This trust assumption depends on the
existence and operation of a building security system.

o Justification: The entrances to the building are pro-
tected by professional security staff who verify that
people entering the building are employees. If a person
who is not an employee is permitted entrance, that
person is escorted by a member of security staff while
in the building.

e Security requirements partially satisfied: Address
information shall be restricted to employees.

5.3 Trust assumptions as domain restrictions

The above examples support our position that trust
assumptions are domain restrictions. The clearest

"For space reasons, we will not include any further long descrip-
tions of the trust assumptions.

example is the security system trust assumption (TA2.2
in Fig. 5); it restricts the membership of the People do-
main to people acceptable to the door guard, effectively
converting the domain to employees. The other trust
assumptions play a similar role. For example, TA1.2 (IT
Admin: correct administration) trust assumption limits
the number of people having acceptable credentials.

TA2.1 and TA2.3 (IT Admin: domains are secure
and the IT Admin: encryption is strong) illustrate
restricting behavior (specification) as opposed to
membership. In the case of TA2.3, the behavior of the
Address Info domain is restricted to supply informa-
tion only at the level indicated by the key; the assertion
is that no other case exists. In the case of TA2.1, the
domain is restricted to supplying ‘in the clear’ infor-
mation to holders of valid encryption keys; the asser-
tion is that no alternate method to obtain the
information exists.

6 Case study

The secure electronic transaction (SET) specifications
[20-22] describe a set of mechanisms intended to provide
an acceptable level of security for on-line purchasing.
This case study looks at incorporating the SET specifi-
cation into software to support cardholder-side payment
authorization. There is one requirement (in the problem
frames sense): Complete the Purchase. The study con-
siders one asset, customer account information (CAI), and
one derived security goal Purchases shall be authorized.
Several trust assumptions are derived during the analysis.

To derive the trust assumptions, we first determine the
threat descriptions, then negate them to express the
security requirements (the constraints). Two threat
descriptions are used in this case study: exposure of CAI
could lead to financial loss (from the goal of confidential-
ity), and unauthorized use of cardholder credentials could
lead to financial loss (from the goal of integrity). Appro-
priate security requirements (constraints) are added to the
requirements: SR1: only authorized users may know CAI
and SR2: only authorized individuals may use the card-
holder credentials. The resulting trust assumptions needed

to satisfy the security requirements will be listed in a later
section.

6.1 Secure electronic transaction overview

Secure electronic transaction describes a series of opera-
tions between players in an electronic purchase transac-
tion using a credit card. In SET, a cardholder requests a
cryptographic certificate from a certificate authority (CA).
The CA verifies that the cardholder has a credit card ac-
count with an issuer, and then supplies a certificate. The
cardholder can subsequently use the certificate to make
purchases from a merchant. The merchant uses a payment
gateway to pass the transaction to the acquirer (the mer-
chant’s bank) for collection. The acquirer normally
operates the payment gateway. Figure 6 presents a sim-
plified version of the SET ““‘processing flows” (terminology
from [20]), showing the players and the messages they
interchange. Several SET messages and fields that do not
have a direct bearing on this discussion have been omitted
from the diagram, in particular the obtaining of certifi-
cates and private keys, and the initial verification of
cardholder information. In addition, the diagram shows
the merchant using the CAI, which although optional in
SET is the technique that the SET specification claims will
be the most often used ([21], p 14).

6.2 Secure electronic transaction-identified security
assumptions

The SET specifications make the following security-re-
lated assumptions about the SET environment relevant
to this case study. They are relevant because they point
us at vulnerabilities considered by the writers of the SET
specification.

e SAl: The cardholder ensures that no one else has
access to his/her private key ([20], p 16). In particular,
SET software vendors shall ““‘ensure that the certificate
and related information is stored in a way to prevent
unauthorized access” ([20], p 46).

145

e SA2: Cardholder, merchant, and payment gateway
machines are free of viruses and trojan horses, and are
not susceptible to being hacked ([20], p 11).

e SA3: Programming methods and the cryptographic
system, and in particular the random number gener-
ators, are of the highest quality ([20], p 16).

e SA4: The merchant’s system stores account informa-
tion in an encrypted form, and if possible off-line or
behind a firewall ([21], p 39).

6.3 The initial problem diagram

There is only one requirement in this case study and
therefore only one problem diagram. The context we are
using does not show any analysis of the ‘shopping’
process, instead focusing on the point where a purchase
is completed. Taking the SET processing flows into
consideration, a first-cut problem diagram is shown in
Fig. 7.

Recall from Sect. 6 the two security requirements we
must satisfy: SR1, only authorized users may know CAI
and SR2: only authorized individuals may use the card-
holder credentials. CAl is made visible by the CAI phe-
nomena in the problem diagram, and the asset
cardholder credentials is stored in the machine. Our goal
is to generate a satisfaction argument that these security
requirements are satisfied.

By tracing the CAI through the problem diagram, we
see that it must reside in unknown form within the
Machine domain. According to the SET specification,
the CAI must be encrypted between the machine and the
merchant. There is nothing in the problem that indicates
that the user or the merchant should be able to see the
CAI. We can say the same thing for cardholder cre-
dentials. These observations and the security assump-
tions SA1-SA4 lead us to make the following trust
assumptions:

e TAl-l1—satisfaction of SR2: As the credentials are
stored on the machine, and as there is no apparent

P G 3] 5:Authorize (CAL AMT) |\‘
ayment ; ateway Certs: Public Key SET certificates
(acquirer) \1 6: OK AUTH e— er
A A CALI: Cardholder account
\51 10: Pay (CAL MAI, AMT) —— information
: - 11: OK PMT |4/
Vl 4: Authorize (PL, TD | meCAIL: CAI encrypted
| 7: OK AUTH (meCAl) | A w/merchant key
Vl 9: Rgst Payment (TI, AMT) | pgCALIL: CAl encr. w/ pmt gateway
| 12: OK PMT | | Shop | key
¢ A 4 / 1: Checkout (Certs) Cardhold MAI: Merchant account
Merchant 4y 2:0K (Certs, TI) 7 ardholder information
‘q 3: Give (P, pgCAD / TI: Transaction identifier

8: OK Purchase

Fig. 6 Simplified SET processing flows

146

MA !checkout() Merchant
ME!OK_purchase ST
MA!give() . o~

ME!OK +" Authorize purchase
Display /'/ - SR1: Only auth \
Machine results ' USEIs may use “
stores CAI | ;rl:g“ Only auth ;
b priv k MA !result() \ - Unly aui
prv eyt '\ users may see CAI ./

. _/
US!am\ Users B

Fig. 7 Purchase problem

way to limit who can access these credentials, SA1
forces us to assume that the domain Users in the
problem contains only individuals authorized to use
the credentials.

o TAIl-2—satisfaction of SR1: The CAI and credentials
are not visible outside the machine (SA2).

e TA1-3—satisfaction of SR1: The generated symmetric
encryption keys are cryptographically secure (SA3).

o TAl-4—satisfaction of SR1 and SR2: The merchant
cannot know the cardholder’s private key, and there-
fore cannot access the CAI that it passes through to
the payment gateway.

The first trust assumption (TAl-1), that the domain
Users contains only authorized individuals, is clearly
risky, making the argument that SR2 is satisfied very
problematic. There is no information available to justify
the claim. The analyst should change the problem to
eliminate the trust assumption and reduce the risk. A
similar statement must be made about TA1-2, because
nothing is said that allows the engineer to claim that the
storage is secure. If the information can be read without
supplying a key that is not stored on the machine, then
the existence of viruses, spyware, and other programs/
users make the trust assumption’s claim ludicrous.
Vulnerabilities to the threats still exist, and appropriate
domains and phenomena must be added to close the
vulnerabilities and satisfy the requirement.

Verifying TA1-3 is probably not necessary, assuming
that the cryptographic software comes from a company
that the requirements engineer believes has verified its
applications. If the engineer is uncomfortable with this
belief, then a domain representing the encryption soft-
ware must be added to the problem, and then analyzed
appropriately.

TA1-4 serves to limit the scope of the analysis, stating
that nothing on the other side of the merchant can ex-
pose CAI to the merchant. Unfortunately, the SET
‘processing flows’ diagram (step 7) shows that the pay-
ment gateway can give the CAI back to the merchant.
The trust assumption is invalid and must be removed.

Because TAI1-1 was rejected, a passphrase has been
added to verify that the user is authorized. The pass-
phrase is used to encrypt the CAI and certificate storage.
Use of the passphrase and encryption protects the CAI

ME authorize(...)
PG!OW Merchant ol
Payment | MA!checkout(...) 3 .) \
Gateway ME!OK_purch L Authorize .
MAlgive(...) Display N Plglgliésg \
ME!OK ° ;- SRI:Onlyauth
results =3 users may use '
Machine i creds]

1 .
MAlresult(...) . SR2:Onlyauth

users may see !

MA!GetInfo(fassphrase)
CAI !

| i \
STinfo(... US !authorize(passphrase) K

Encr. Storage Users)
CAI & creds T

Fig. 8 Purchase problem (again)

against both viruses and other users of the machine.
Spyware that can capture the entry of the passphrase is
still a problem, not further discussed in this paper.

Figure 8 presents the modified problem. The context
has been expanded to include the payment gateway.

Thinking about the satisfaction argument using the
new problem diagram exposes the need for the following
trust assumptions:

e TA2-1—satisfaction of SR1 and SR2: Users will not
expose the passphrase.

o TA2-2—satisfaction of SR2: The merchant imple-
ments the SET recommendations and securely stores
the CAI. There is no practical way to bypass this
security, regardless of storage medium (operational,
backup, etc.)

e TA2-3—satisfaction of SR2: The merchant’s
employees authorized to see the CAI will not reveal it.

o TA2-4—satisfaction of SR2: The CAI never appears
in the clear on the merchant’s internal network.

e The same trust assumptions that apply to the mer-
chant also apply to the payment gateway.

Figure 9 presents the solution along with the four trust
assumptions. To reduce the complexity of the diagram,
the phenomena and the trust assumptions applied to the
payment gateway are not shown.

The risk presented by TA2-1, that the passphrase will
remain confidential, may or may not be acceptable. For
example, a French bank decided the risk was too high,
and included a smartcard reader in its implementation.
The user must both know the passphrase and insert the
appropriate smartcard into the reader. This solution
greatly reduced the risk presented by spyware.

The remaining trust assumptions are problematic.
There is no practical way for a requirements engineer to
examine every merchant and payment gateway com-
pany, so the assumptions must be accepted at face value.

The trust assumptions required to fulfill the security
requirement might provoke a debate about whether a
customer-side product based SET is worth constructing.
Given that the CAI can be stored on the merchant’s
machine, the difference between a SET solution and the
ubiquitous solution based on secure sockets layer (SSL)

147

Payment Merchant o -
Gateway o7 S
- Z——\ _#" Authorize purchase S
Machine : SN “/\' - SR1: Only auth users \
——— | Display 7 i ; may use creds]
| results _/_ ____ / ----- \- -2 SR2: Only auth users !
Encr. Storage Users - IR S v, may see CAI ./-’
CAI & creds V2 I R 7 \ L
A . N .y el -
o ——F —— 7 =X =
-~ TA2-1: Users: © TA2-2: Merchant: +, ,* TA2-3: Merchant: *. .* TA2-4: Merchant: -,
'\ won’t expose implements SET) \ emps won’t reveal) k CAInot on LAN /
. Dpassphrase % : . recommends . .. CAI e . unencrypted .

. —

Fig. 9 Purchase problem (again)

is not large. Using SET, it is more difficult for a mer-
chant to change an order, but a dishonest merchant
would have no problem creating new non-SET orders
charged to the customer. Dishonest merchants and
employees could sell the account information. Hackers
could steal it. There is nothing the engineer can do to
mitigate the problems exposed by these trust assump-
tions. The customer/stakeholders must decide whether
the risks are acceptable.

7 Related work

We are not aware of other work investigating the cap-
ture of a requirements engineer’s trust assumptions
about the domains that make up the solution to the
problem. However, several groups are looking at secu-
rity requirements, some of which include incorporation
of trust between domains in the context.

7.1 The i* framework

The i* framework [23, 24] takes an ‘actor, intention,
goal’ approach where security and trust relationships
within the model are modeled as “‘softgoals”: goals that
have no precise measure for satisfaction. In [25], Liu
et al. extended the framework to better support security
and privacy by modeling the attacker as a malicious
stakeholder. Countermeasures, which are themselves
goals, are added to thwart the attacker.

The Liu et al. [25] work focuses on the attacker as the
primary point of analysis. One finds vulnerabilities by
asking what an attacker might wish to gain while playing
some role, and then looking for ways that the attacker
might achieve the wish. As i* is focused on the actor, it is
difficult to perform an asset+ threat-centered analysis.
In addition, it could be that the attacker does not wish to
cause harm, but harm is caused. For these reason, we
consider the i* approach to be complementary to but
not equivalent to the one discussed in [7] and in this

paper.

i* can be used to demonstrate the need for certain
trust assumptions, specifically those that restrict which
agents are permitted to play particular roles, and those
that exclude an agent performing exhibiting undesired
behavior. There is, however, no convenient way to insert
these trust assumptions into the model without
expanding the scope of the analysis. For example, one of
the countermeasures proposed in [25] is ““user authenti-
cation mechanism”; this is a leaf task. The mechanisms
that support, provide, and rescind authentication cre-
dentials are not mentioned, but are clearly being trusted
by the analyst to be correct. The only way to express this
trust is to add the actors who administer authentication,
a process that is highly recursive.

The Tropos project [16, 26-30] uses the i* framework,
adding wider lifecycle coverage. The methodology fo-
cuses on connecting agent-oriented architecture and
development with i*, extending the i* model to describe
the details of the agents’ behaviors. A formal specifica-
tion language was added in [27]. Security, represented as
constraints on the interactions between two agents, was
added in [16] and [30], extending the specification lan-
guage to express these constraints and agent interaction
dependencies. Architectural styles beyond agent-orien-
tation are also discussed in [30]. Trust and trust dele-
gation were added in [29], along with appropriate
extensions to the specification language.

Although Tropos has significantly enhanced i*’s
ability to represent security constraints and dependen-
cies, it does not extend i*’s ability to represent trust
assumptions made by the analyst about the world. The
authorization example described above also applies to
Tropos; one finds authorization constraints and sub-
goals in [30], but one cannot easily indicate that
administration of the authorization information is
trusted, beyond extending the goal structure to include
analysis of credential administration. One reasonable
position is that certain trust assumptions are embedded
in the definitions and conditions of the formal modeling
language (just as can be said for KAOS below), but these
assumptions would be implicit and not justified.

Other work has extended i* in related directions.
Gans et al. [31] add distrust and inter-agent communi-

148

cation (“speech acts”). Actors in the system decide
dynamically to trust or to distrust each other. Yu and
Cysneiros have focused on privacy in [32], exploring how
privacy requirements fit into an i* model. Both papers
are concerned with analyzing trust relations between
actors/agents in the running system, as opposed to
capturing the requirements engineer’s assumptions.

Because i* and its derivatives do not model the real-
world components forming the connections between the
agents of the system as it will eventually be built, certain
classes of trust assumptions are difficult to make explicit.
The best examples relate to unexpected connections
between domains, such as information passing on paper
through a mailroom, people hearing through walls, and
security of backup media. A problem frames represen-
tation can make these ““properties of the world” explicit,
which is one reason that we have chosen to use it.

As noted above, we believe that our approach com-
plements an i*-based analysis. In addition to being used
to determine the functional goals and requirements, the
i* approaches are useful for finding security goals and
countermeasure tasks oriented around agent interaction
(e.g., as in [25]). Trust assumptions (but not context and
problem diagrams) and satisfaction arguments could be
used to examine the countermeasure tasks for hidden
assumptions that may or may not be justified, and to
justify limiting the analysis at the points chosen.

7.2 KAOS

KAOS [13, 33], a goal-oriented requirements engineering
method, uses obstacles to analyze security and safety
[34]. An obstacle to some goal “is a condition whose
satisfaction may prevent the goal from being achieved”
[35]. A recent addition is anti-goals, a refinement of
obstacles, to discover and close vulnerabilities [35, 36].
One begins with a goal model for some system; the goal
model includes a domain model expressed using tem-
poral logic. Security goals for objects in the domain are
enumerated using a catalog of general goals (e.g., con-
fidentiality, integrity, etc.). One inverts these goals to
express the goals of some attacker (anti-goals), and then
looks for vulnerabilities in the original domain model
that permit the anti-goals to be realized.

As in ¥, there are ways in KAOS to find and express
some kinds of trust assumptions. One could argue that
some expectations, terminal goals under the responsi-
bility of non-software agents [35] (called assumptions in
[13]), are expressions of trust assumptions, as the analyst
is choosing to stop analysis at that point. Domain-spe-
cific axioms might also fall into the category of trust
assumptions. For example, the authorized predicate de-
scribed in [35] is clearly depending on knowing if an
agent is an owner, a proxy, or a manager, but there is no
expression of how it is known or managed. In any event,
the assumptions are not explicit.

As is noted in [35], not all vulnerabilities must be
eliminated, but instead may be mitigated or ignored. The

choice varies with the context of the vulnerability—the
level of harm being risked and the probability that the
harm will occur. Using KAOS, one expresses security
goals in terms of the vulnerability to be addressed, as
opposed to the asset to be protected, losing information
explaining the provenance of the goal (the context of the
vulnerability). Goal refinement further distances the
goal from its source. This distance creates difficulty
when considering whether the cost of satisfying a secu-
rity goal in a particular context is justified by the risk
presented by the vulnerability in that context.

We believe our techniques are complementary to
KAOS. Trust assumptions can describe behavior outside
of the KAOS domain model. They can be used to limit
the depth of a goal derivation graph. Operationalized
security goals uncovered using the methods described in
[35] can be added as constraints to the problem diagrams
that represent the appropriate functional requirements,
after which they must be accounted for by the satisfac-
tion arguments, whether through modifications to the
context or through addition of trust assumptions.

7.3 Other security and privacy work

He and Antdén [37] are concentrating on privacy,
working on mechanisms to assist trusting of privacy
policies, for example on web sites. They propose a
context-based access model. Context is determined using
“purpose” (why is information being accessed), “‘con-
ditions” (what conditions must be satisfied before access
can be granted), and “obligations™ (what actions must
be taken before access can be granted). The framework,
like i*, describes run-time properties, not the require-
ments engineer’s assumptions about the domains form-
ing the solution.

Security requirements have been added to SCR [3§]
and to the WinWin framework [39]. As with * and
KAOS, one can locate some trust assumptions in both
SCR and WinWin by looking for where the analyst
stopped. The implicit decision to limit the context almost
certainly has some number of trust assumptions behind it.

Alexander is looking at detecting vulnerabilities using
misuse cases [40, 41], as are Sindre et al. [42]. McDermott
uses ‘abuse cases’ [43, 44]. These techniques all assist with
reasoning about security by postulating the existence of
an attacker who attempts to exploit the system in a way
that will cause harm. Sindre et al. [42] introduced the idea
of misuse and misactors into use cases to identify poten-
tial security flaws in a system. This work concentrated on
simplicity, using the diagrams as a communications tool
and saying that “‘misuse diagrams must only be seen as a
support for eliciting threats”. Alexander extended the
relations over those presented by Sindre et al., adding
mitigation and restriction. McDermott et al. concentrated
on exploring the details of an exploit, documenting the
route and expertise needed to be successful. In all cases,
an analyst’s trust assumptions are embedded in the
diagrams and not made explicit; one can argue that the

very choices of the cases to analyze constitute trust
assumptions. Although we believe that these techniques
do not capture trust assumptions, they should be quite
useful for testing validity of the satisfaction arguments
built using trust assumptions.

Srivatanakul et al. [45] are combining use cases with
risk analysis techniques taken from safety, specifically
HAZOP. They extend the abuse case and misuse case
work discussed above ([40-44]) by adding HAZOP
‘guideword’-driven analysis of use cases to find potential
abuses. One uses the guidewords to find deviations for
the elements in a use case (e.g., actors, associations,
event flow, pre- and post-conditions). These deviations
represent potential violations of “‘security properties’ of
a system. If a security property is violated, the deviation
represents a successful attack. One locates the vulnera-
bilities that were exploited, then takes appropriate steps
to close or mitigate the vulnerabilities. The method, like
misuse cases, abuse cases, and abuse frames [46], takes
what might be considered a bottom-up approach; the
methods locate vulnerabilities that lead to security
requirements that, if satisfied, will ensure the closure the
vulnerabilities. If no vulnerabilities are found, then the
satisfaction argument has been bolstered. Although the
technique as described employs use cases, we believe that
a similar technique would work with the problem
frames-based method we have used, adding another tool
to help operationalize security goals into security
requirements.

Some of the work in the aspect-oriented requirements
engineering (AORE) community is related to identifi-
cation of security requirements. Rashid et al. propose
that ideas from aspect-oriented software development
can be used when mapping non-functional requirements
(NFRs) onto functional requirements [47, 48]. They start
by identifying the NFRs that affect more than one
functional requirement, determine what the effect of the
overlap is, then model the composition of the require-
ments. In their work, security is treated identically to
other NFRs. Their work is more general than the work
presented in this paper. It focuses on managing the
interplay and the results of composition of the require-
ments, not deriving requirements from the NFRs. Brito
et al. [49] propose that non-functional requirements
from an NFR catalog [15], be integrated with functional
requirements using a composition process. The compo-
sition process connects security goals with functional
requirements and permits specifying the priority of sat-
isfaction arguments, but does not aid with the con-
struction of these arguments. None of this work
incorporates capture of the assumptions made by a
requirements engineer when specifying a system.

7.4 Design rationale
Satisfaction arguments are clearly related to argumen-

tation and design rationale. Our current position is that
design rationale is principally concerned with capturing

149

how one arrived at a decision, alternate decisions, or the
parameters that went into making the decision [50]. For
example, Buckingham Shum [51] focuses on how ratio-
nale (arguments) are visualized, especially in collabora-
tive environments. Potts and Bruns [52], and later Burge
and Brown [53], discuss capturing how decisions were
made, which decisions were rejected or accepted, and the
reasons behind these actions. Mylopoulos et al. [54]
present a way to represent formally knowledge that was
captured in some way, without focusing on the outcome
of any decisions. Ramesh and Dhar [55] describe a sys-
tem for “capturing history in the upstream part of the
life cycle.” Fischer et al. [56] suggest that the explicit
process of argumentation can itself feed into and benefit
design. Finkelstein and Fuks [57] suggest that the
development of specifications by multiple stakeholders,
who hold disparate views, may be achieved through an
explicit dialogue that captures speech acts, such as
assertions, questions, denials, challenges, etc. The rep-
resentation of the dialogue is then a rationale for the
specifications constructed.

To reiterate, our position is that the common element
in all of the above work is the capture over time of the
thoughts and reasons behind decisions. Whether the
decisions satisfy the needs is not the primary question.
We will be verifying this position in future work, looking
at how our research fits in with other design rationale
work, the representation of satisfaction arguments, and
how one argues that trust assumptions are needed and
sufficient. (For an example, see [58].)

8 Conclusions and future work

We have provided an approach for using trust assump-
tions when reasoning about the satisfaction of security
requirements. The approach uses the strong distinction
between system requirements and machine specifications
found in problem frames, permitting the requirements
engineer to choose how to conform to the requirements.
The trust assumptions embedded in the solution inform
requirements engineers, better enabling them to choose
between alternate ways of satisfying the functional
requirements while ensuring that vulnerabilities are re-
moved or not created.

A prime area of future work is how our research fits
in with argumentation and design rationale. See Sect. 7.4
for more discussion.

Another future focus will be a tighter coupling of
trust assumptions and problem frames. When a larger
problem is decomposed, the domains in the resulting
problem diagrams are a projection of the context. The
projection can combine domains into single entities, or it
can split a domain into its component parts. Having
such projections raises the question “to what, exactly, is
the trust assumption connected?”” The question is
important because trust assumptions have impacts on
the membership and phenomena of the projected
domain, and we must determine how these impacts

150

affect other problems that reference any part of the
projected domain. Finally, whether and how problem
classes affect the derivation of trust assumptions is of
significant interest.

Acknowledgements The financial support of the Royal Academy of
Engineering and the Leverhulme Trust is gratefully acknowledged,
as is the EU for supporting the E-LeGI project, number IST-
002205. Thanks also go to Michael Jackson for many insights
about problem frames and requirements. This paper is a revised
and extended version of [59] and [60].

References

L.

I1.

12.

13.

14.

15.

16.

17.

18.

ISO/IEC: Information Technology—Security Tech-
niques—Evaluation Criteria for IT Security. Part 1: Introduc-
tion and general model. International Standard 15408-1, ISO/
1EC, Geneva Switzerland, 1 Dec 1999

. Zave P (1997) Classification of research efforts in requirements

engineering. Comput Survey 29(4):315-321

. van Lamsweerde A (2000) Requirements engineering in the

year 00: a research perspective. In: Proceedings of the 22nd
international conference on software engineering (ICSE’00), 4—
11 June 2000. IEEE Computer Society Press

. Greenspan SJ, Mylopoulos J, Borgida A (1982) Capturing

more world knowledge in the requirements specification. In:
Proceedings of the 6th international conference on software
engineering (ICSE’82), Tokyo, 13-16 September 1982, pp 225—
234

. Devanbu P, Stubblebine S (2000) Software engineering for

security: a roadmap. In: Finkelstein A (ed) The future of
software engineering. ACM Press, New York

. Firesmith DG (2003) Common concepts underlying safety,

security, and survivability engineering. Technical Report
CMU/SEI-2003-TN-033, Software Engineering Institute, Car-
negie Mellon University, Pittsburgh

. Moffett JD, Haley CB, Nuseibeh B (2004) Core security

requirements artefacts. Technical Report 2004/23, Department
of Computing, The Open University, Milton Keynes

. Jackson M (1995) Software requirements and specifications.

Addison Wesley, Reading

. Jackson M (2001) Problem frames. Addison Wesley, Reading
. Viega J, Kohno T, Potter B (2001) Trust (and mistrust) in

secure applications. Commun ACM 44(2):31-36

Thompson K (1984) Reflections on trusting trust. Commun
ACM 27(8):761-763

Haley CB, Laney RC, Nuseibeh B (2004) Deriving security
requirements from crosscutting threat descriptions. In: Pro-
ceedings of the 3rd international conference on aspect-oriented
software development (AOSD’04), Lancaster, 22-26 March
2004. ACM Press, New York, pp 112-121

van Lamsweerde A (2001) Goal-oriented requirements engi-
neering: a guided tour. In: Proceedings of the 5th IEEE inter-
national symposium on requirements engineering (RE’01),
Toronto, 27-31 August 2001. IEEE Computer Society Press,
pp 249-263

Zave P, Jackson M (1997) Four dark corners of requirements
engineering. Trans Softw Eng Method 6(1):1-30

Chung L, Nixon B, Yu E, Mylopoulos J (2000) Non-functional
requirements in software engineering. Kluwer, Dordrecht
Gani A, Manson G, Giorgini P, Mouratidis H (2003) Analy-
sing security requirements of information systems using Tro-
pos. In: Proceedings of the 5th international conference on
enterprise information systems (ICEIS’03), Angers, 23-26 April
2003

Kotonya G, Sommerville I (1998) Requirements engineering:
processes and techniques. Wiley, United Kingdom

Pfleeger CP, Pfleeger SL (2002) Security in computing. Prentice
Hall, Englewood Cliffs

20.

21

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

32.

33.

34.

35.

. Grandison T, Sloman M (2003) Trust management tools for

internet applications. In: Proceedings of the 1st international
conference on trust management, vol 2692, Heraklion, Crete,
28-30 May 2003. Springer, Berlin Heidelberg New York
Secure Electronic Transaction LLC: SET Secure Electronic
Transaction Specification Book 1: Business description, version
1.0. Purchase NY, 31 May 1997

. Secure Electronic Transaction LLC: SET Secure Electronic

Transaction Specification Book 2: Programmer’s guide, version
1.0. Purchase NY, 31 May 1997

Secure Electronic Transaction LLC: SET Secure Electronic
Transaction Specification Book 3: Formal protocol definition,
version 1.0. Purchase NY, 31 May 1997

Yu E (1997) Towards modelling and reasoning support for
early-phase requirements engineering. In: Proceedings of the
3rd IEEE international symposium on requirements engineer-
ing (RE’97), Annapolis, 6-10 January 1997, pp 226-235

Yu E, Liu L (2001) Modelling trust for system design using the
i* strategic actors framework. In: Falcone R, Singh MP, Tan
YH (eds) Trust in cyber-societies, integrating the human and
artificial perspectives Springer, Berlin Heidelberg New York,
15-16 October 2002, pp 175-194

Liu L, Yu E, Mylopoulos J (2003) Security and privacy
requirements analysis within a social setting. In: Proceedings of
the 11th IEEE international requirements engineering confer-
ence (RE’03), Monteray Bay, 8-12 September 2003

Castro J, Kolp M, Mylopoulos J (2001) A requirements-driven
development methodology. In: Proceedings of the 13th confer-
ence on advanced information systems engineering (CAiSE’01),
Interlaken, Switzerland, 4-8 June 2001, pp 108-123

Fuxman A, Pistore M, Mylopoulos J, Traverso P (2001) Model
checking early requirements specifications in Tropos. In: Pro-
ceedings of the 5th IEEE international symposium on
requirements engineering, Toronto, pp 174-181

Giorgini P, Massacci F, Mylopoulos J (2003) Requirement
engineering meets security: a case study on modelling secure
electronic transactions by VISA and Mastercard. In: Proceed-
ings of the 22nd international conference on conceptual mod-
eling, Chicago, 13-16 October 2003. Springer, Berlin
Heidelberg New York, pp 263-276

Giorgini P, Massacci F, Mylopoulos J, Zannone N (2004)
Requirements engineering meets trust management: model,
method, and reasoning. In: Proceedings of the 2nd interna-
tional conference on trust management, Oxford, 28 March-1
April 2004. Lecture notes in computer science. Springer, Berlin
Heidelberg New York

Mouratidis H, Giorgini P, Manson G (2003) Integrating
security and systems engineering: toward the modelling of se-
cure information systems. In: Proceedings of the 15th confer-
ence on advanced information systems engineering (CAiSE’03),
Klagenfurt/Velden, 6-10 June 2003. Springer, Berlin Heidel-
berg New York

Gans G, Jarke M, Kethers S, Lakemeyer G, Ellrich L, Funken
C, Meister M (2001) Requirements modeling for organization
networks: a (dis)trust-based approach. In: Proceedings of the
5th IEEE international symposium on requirements engineer-
ing (RE’01), 27-31 August 2001. IEEE Computer Society
Press, Toronto, pp 154-165

Yu E, Cysneiros LM (2002) Designing for privacy and other
competing requirements. In: Proceedings of the 2nd symposium
on requirements engineering for information security (SRE-
1S°02), Raleigh

Dardenne A, van Lamsweerde A, Fickas S (1993) Goal-direc-
ted requirements acquisition. Sci Comput Program 20(1-2):3—
50

van Lamsweerde A, Letier E (2000) Handling obstacles in goal-
oriented requirements engineering. Transact Softw Eng (IEEE)
26(10):978-1005

van Lamsweerde A (2004) Elaborating security requirements by
construction of intentional anti-models. In: Proceedings of the
26th international conference on software engineering
(ICSE’04), Edinburgh, 26-28 May 2004, pp 148-157

36.

37.

38.

39.
40.

41.

42.

43.

44.

45.

46.

47.

van Lamsweerde A, Brohez S, De Landtsheer R, Janssens D
(2003) From system goals to intruder anti-goals: attack gener-
ation and resolution for security requirements engineering. In:
Requirements for high assurance systems workshop
(RHAS’03), 11th international requirements engineering con-
ference (RE’03), Monterey, 8 September 2003

He Q, Anton Al (2003) A framework for modeling privacy
requirements in role engineering. In: Proceedings of the 9th
international workshop on requirements engineering: founda-
tion for software quality, the 15th conference on advanced
information systems engineering (CAiSE’03), Klagenfurt/Vel-
den, 16 June 2003

Heitmeyer CL (2001) Applying ‘practical’ formal methods to
the specification and analysis of security properties. In: Pro-
ceedings of the international workshop on information assur-
ance in computer networks: methods, models, and architectures
for network computer security (MMM ACNS 2001), vol 2052,
St. Petersburg, 21-23 May 2001. Springer, Berlin Heidelberg
New York, pp 84-89

In H, Boehm BW (2001) Using WinWin quality requirements
management tools: a case study. Ann Softw Eng 11(1):141-174
Alexander I (2002) Initial industrial experience of misuse cases
in trade-off analysis. In: Proceedings of the IEEE joint inter-
national conference on requirements engineering (RE’02), Es-
sen, pp 61-68

Alexander I (2002) Modelling the interplay of conflicting goals
with use and misuse cases. In: Proceedings of 8th international
workshop on requirements engineering: foundation for soft-
ware quality (REFSQ’02), Essen, 9-10 September 2002, pp
145-152

Sindre G, Opdahl AL (2000) Eliciting security requirements by
misuse cases. In: Proceedings of the 37th international confer-
ence on technology of object-oriented languages and systems
(TOOLS-Pacific’00), Sydney, 20-23 November 2000, pp 120—
131

McDermott J (2001) Abuse-case-based assurance arguments.
In: Proceedings of the 17th computer security applications
conference (ACSAC’01), New Orleans, 10-14 December 2001.
IEEE Computer Society Press, pp 366-374

McDermott J, Fox C (1999) Using abuse case models for
security requirements analysis. In: Proceedings of the 15th
computer security applications conference (ACSAC’99),
Phoenix, 6-10 December 1999. IEEE Computer Society Press,
pp 55-64

Srivatanakul T, Clark JA, Polack F (2004) Writing effective
security abuse cases. Technical Report YCS-2004-375,
Department of Computer Science, University of York, York,
11 May 2004

Lin L, Nuseibeh B, Ince D, Jackson M, Moffett J (2003)
Introducing abuse frames for analyzing security requirements.
In: Proceedings of the 11th IEEE international requirements
engineering conference (RE’03), Monterey, 8-12 September
2003, pp 371-372

Rashid A, Moreira AMD, Aratjo J (2003) Modularisation and
composition of aspectual requirements. In: Proceedings of the
2nd international conference on aspect-oriented software

48.

49.

50.

5L

52.

53.

54.

55.

56.

57.

S8.

59.

60.

151

development (AOSD’03), Boston, 17-21 March 2003. ACM
Press, New York, pp 11-20

Rashid A, Sawyer P, Moreira AMD, Aratjo J (2002) Early
aspects: a model for aspect-oriented requirements engineering.
In: Proceedings of the IEEE joint international conference on
requirements engineering (RE’02), Essen, 9-13 September
2002, pp 199-202

Brito I, Moreira A (2004) Integrating the NFR framework in a
RE model. Presented at Early aspects 2004: aspect-oriented
requirements engineering and architecture design (AORE’04),
with the 3rd international conference on aspect-oriented soft-
ware development (AOSD’04), Lancaster University, UK

Lee J, Lai KY (1991) What’s in design rationale? Hum Comput
Interact Spec Issue Design Rationale 6(3-4):251-280
Backingham Shum SJ (2003) The roots of computer supported
argument visualization. In: Kirschner PA, Buckingham Shum
SJ, Carr CS (eds) Visualizing argumentation: software tools for
collaborative, educational sense-making. Springer, London, pp
3-24

Potts C, Bruns G (1988) Recording the reasons for design
decisions. In: Proceedings of the 10th international conference
on software engineering (ICSE’88), Singapore. IEEE Computer
Society, pp 418-427

Burge JE, Brown DC (2004) An integrated approach for soft-
ware design checking using design rationale. In: Gero JS (ed)
Proceedings of the Ist international conference on design
computing and cognition. Kluwer, Cambridge, pp 557-576
Mylopoulos J, Borgida A, Jarke M, Koubarakis M (1990)
Telos: representing knowledge about information systems.
ACM Trans Inf Syst (TOIS) 8(4):325-362

Ramesh B, Dhar V (1992) Supporting systems development by
capturing deliberations during requirements engineering. IEEE
Trans Softw Eng 18(6):498-510

Fischer G, Lemke AC, McCall R, Morch A (1996) Making
argumentation serve design. In: Moran T, Carrol J (Eds) De-
sign rationale concepts, techniques, and use. Lawrence Erl-
baum and Associates, Mahwah, pp 267-293

Finkelstein A, Fuks H (1989) Multiparty specification. In:
Proceedings of the 5th international workshop on software
specification and design, Pittsburgh, pp 185-195

Haley CB, Laney RC, Nuseibeh B (2005) Arguing security:
validating security requirements using structured argumenta-
tion. Technical Report 2005/04, Department of Computing,
The Open University, Milton Keynes, 21 March 2005

Haley CB, Laney RC, Moffett JD, Nuseibeh B (2004) The ef-
fect of trust assumptions on the elaboration of security
requirements. In: Proceedings of the 12th international
requirements engineering conference (RE’04), Kyoto, 6-10
September 2004. IEEE Computer Society Press, pp 102-111
Haley CB, Laney RC, Moffett JD, Nuseibeh B (2004) Picking
battles: the impact of trust assumptions on the elaboration of
security requirements. In: Proceedings of the 2nd international
conference on trust management (iTrust’04), vol 2995, St An-
ne’s College, Oxford, 29 March—1April 2004. Lecture notes in
computer science. Springer, Berlin Heidelberg New York, pp
347-354

	Sec1
	Sec2
	Sec3
	Fig1
	Fig2
	Sec4
	Sec5
	Fig3
	Sec6
	Sec7
	Sec8
	Sec9
	Sec10
	Fig4
	Sec11
	Sec12
	Fig5
	Sec13
	Sec14
	Sec15
	Fig6
	Fig7
	Fig8
	Sec16
	Sec17
	Fig9
	Sec18
	Sec19
	Sec20
	Sec21
	Ack
	Bib
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27
	CR28
	CR29
	CR30
	CR31
	CR32
	CR33
	CR34
	CR35
	CR36
	CR37
	CR38
	CR39
	CR40
	CR41
	CR42
	CR43
	CR44
	CR45
	CR46
	CR47
	CR48
	CR49
	CR50
	CR51
	CR52
	CR53
	CR54
	CR55
	CR56
	CR57
	CR58
	CR59
	CR60

