2010 Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Model-based Argument Analysis for Evolving Security Requirements

Thein Than Tun?!, Yijun Yu!, Charles Haleyl, Bashar Nuseibeh!?2
' Department of Computing, The Open University, Milton Keynes, UK
2Lero, Limerick, Ireland
{t.t.tun, y.yu, c.b.haley, b.a.nuseibeh}@open.ac.uk

Abstract—Software systems are made to evolve in response
to changes in their contexts and requirements. As the systems
evolve, security concerns need to be analysed in order to
evaluate the impact of changes on the systems. We propose
to investigate such changes by applying a meta-model of
evolving security requirements, which draws on requirements
engineering approaches, security analysis, argumentation and
software evolution. In this paper, we show how the meta-model
can be instantiated using a formalism of temporal logic, called
the Event Calculus. The main contribution is a model based
approach to argument analysis, supported by a tool which
generates templates for formal descriptions of the evolving
system. We apply our approach to several examples from an
Air Traffic Management case study.

Keywords-Security argumentation; Requirements Engineer-
ing; Evolution; Event Calculus; OpenPF

I. INTRODUCTION

Long-lived software systems often evolve over an ex-
tended period of time. Evolution of these systems is in-
evitable as they need to continue to satisfy changing business
needs, new regulations/standards and the introduction of
novel technologies.

Such evolution may add, remove, or modify the re-
quirements and parts of the system contexts, and migrate
the system from one operating platform to another. These
changes may result in requirements that were satisfied in a
previous release of a system not being satisfied in the newer
release of the system. When evolutionary changes violate
security requirements, a system may be left vulnerable to
attacks.

As a software system evolves, security concerns need to
be analysed in order to evaluate the impact of changes on
the requirements. Traditionally, changes that could affect
the system security have been handled in an ad-hoc way.
For instance, changes are often described in an informal
language, whilst the information about the existing system
design is partial. Analysing the security impact of changes
is therefore a complex challenge.

By adopting a model-based engineering methodology, we
propose to investigate such changes using a meta-model
of Evolving Security Requirements (ESR). The ESR meta-
model has the following characteristics.

1) Security problems are examined at the requirements
level

978-0-7695-4086-3/10 $26.00 © 2010 IEEE
DOI 10.1109/SSIRI.2010.36

88

2) Security-specific concepts such as attacker, assets and
vulnerabilities are made explicit

Argumentation is used to describe relationship be-
tween formal and informal descriptions of system
artefacts in order to show why the system is thought
to be secure

Evolutionary changes are considered orthogonal to all
artefacts

The ESR meta-model draws on the concepts in require-
ments engineering, security analysis, argumentation, and
software evolution.

In this paper, we show how the ESR meta-model can
be used to generate templates for formal descriptions of a
system, in a way similar to model-driven code generation.
Security problems of software systems are described using
the problem diagrams [1]. Our tool OpenPF performs
the model-to-text transformation to generate Event Calculus
descriptions compliant with the ESR meta-model. As a
result, changes in the meta-model can be reflected by the
generated Event Calculus descriptions before modifying and
feeding into a reasoning engine for security analysis. Since
the meta-model is rich enough to express core concepts in
security requirements, many of the existing RE languages
can be mapped to the meta-model so that the argumentation
can be performed to analyse the changes in the evolution.

The major advantage of our approach is that it frees
the requirements engineers from having to write mundane
parts of the formal descriptions as the system evolve: they
can focus on the more abstract and critical part of the
descriptions instead.

We have applied the transformations to examples from
an Air Traffic Management system. The study shows that a
large part of the formal descriptions can be generated using
the OpenPF tool, whilst improving the interface with the
Event Calculus reasoning engine.

The rest of the paper is organized as follows. Section II
relates our work to similar approaches in the literature.
Section III presents an illustrative example from the Air
Traffic Management (ATM) system. Section IV shows the
key parts of the ESR meta-model, which captures the key
concepts involved in our analysis. Section V gives the syntax
and semantics of the Event Calculus formalism, which is
the target language for the transformations. The proposed
tool, OpenPF is described in Section VI. Section VII uses

3)

4)

IEEE
computer
® psouety

the running example to go through the transformation and
reasoning processes and explains the results. Section VIII
gives concluding comments.

II. RELATED WORK

By way of putting our discussions into context, this
section provides a survey of related work, which covers
existing research into meta-models of requirements, secu-
rity requirements, change management and formalisation of
argumentation.

Meta-models of (security) requirements: Gunter et
al. [2] formalise the relationships between key artefacts
in requirements engineering, namely, requirement, problem
world context, specification, program, and computer. They
further define the responsibilities of requirements engineers
and software developers. Earlier, Parnas and Madey pro-
posed the four-variable model in [3]. Jureta et al. [4] extend
the Jackson-Zave framework in order to include concepts
such as beliefs, desires, intentions, and attitudes. These
meta-models are not explicit about security requirements:
they do not distinguish between users and attackers, for
instance.

There are several proposals for meta-models of security
requirements engineering: Hartong et al describe a meta-
model of misuse cases [5]. Susi et al [6] give a meta
model of Tropos. van Lamsweerde [7] suggests that KAOS
provide necessary concepts for analysing intentional security
requirements. Elahi et al. [8] propose a ontology of security
requirements which focuses on the notion of vulnerabil-
ity. Beydoun et al [9] incorporate security issues into a
meta-model of multi-agent systems. Basin et al describe
a meta-model-based approach to analysing access control
problems. A taxonomy of information security is provided
by Savolainen et al in [10]. Lee et al [11] propose a domain
ontology based on regulatory documents.

Although these proposals are useful in modelling different
aspects of security requirements, they do not capture evolu-
tionary nature of security requirements. Furthermore, the fact
that security analysis has to draw on the formal and informal
descriptions of the system is often overlooked. Our meta-
model is geared towards evolutionary security requirements,
and argumentation for bringing together formal and informal
descriptions.

Security requirements engineering: Several require-
ments engineering approaches for security engineering have
been proposed [12], [13], and many of the approaches have
been surveyed in [14], and here we briefly recall some of
them to put this work into context.

In [13], precondition calculus has been used to regres-
sively compute obstacles. Label propagation has been used
in goal-oriented requirements engineering in order to analyse
satisfaction of security requirements [15]. However, the issue
of maintaining the security while introducing change to an
existing system has not been extensively studied.

89

Change Management: The importance of managing
change in software development has been recognized for a
long time [16]. Several approaches for investigating software
evolution have been developed, focusing on various issues
including: empirical observation of change [17], feature
location [18], version control of development artefacts [19],
evolving the software systems during the runtime [20],
change recommendations based on historical data and
heuristics [21], [22], and economic analysis of change [23].

Although many of these issues are present in the evolution
of secure software systems, in this work we focus on
the unresolved issue of model-based generating of formal
descriptions in order to facilitate automated analysis of
change.

Arugmentations: Human intuitions about argumenta-
tion have been formalized recently using various logics [24]—
[29], in which the use of formal and informal argumenta-
tions in the context of requirements engineering have been
discussed. For example, argumentation has been useful to
document the correctness and completeness of goal de-
composition using GSN in [29]. Earlier, an argumentation
framework to security requirements has been developed and
applied in [30]. This work can be considered as an extension
to [30] that addresses the argumentation problem together
with tool supported change analysis.

III. ATM EXAMPLE: SENDING WEATHER DATA

One of the key services of ATC systems is to maintain
a degree of separation distance between aircrafts. This
involves the surveillance of aircrafts in airspaces, and the
determination of the flight paths and the separation neces-
sary. Separation distance may vary for a number of reasons,
including the type of involved aircrafts, and the stages of
journey they are at. For all airborne aircraft in a controlled
airspace, human air traffic controllers (ATC operators) on the
ground need to know where each aircraft is in the airspace
in order to determine the flight paths.

One of the main requirements of the ATC systems is to
ensure that a certain separation distance (SD) is maintained
between aircrafts in the airspace controlled by an ATC
system. The SD requirement needs to be satisfied by the
system at all times. Furthermore, ATC operators can send
various data and directions to the aircrafts using ATM sys-
tem. Some of the data can potentially change the flight paths
and are therefore security-related. One of such requirements
considered in the rest of the paper is about sending weather
data to the aircraft.

During the analysis of requirements such as this, the
requirements engineer will have to describe the behaviour
of various parts of the system, including the ATC operator,
ATM system, the aircraft, and the pilot, identify the assets
and security vulnerabilities in each of the components and
their configuration, provide mitigation when necessary and
show that the security requirements can be met by the system

through formal/informal arguments. In addition, when the
system evolves, the behaviour of the system components
and the requirements may change. Therefore, automated
generation of partial descriptions of the system components
facilitates the analysis process.

IV. META-MODEL

Our ESR meta-model, shown in Figure 1, combines con-
cepts from requirements engineering, evolution and security
analysis. Some of the key concepts in the meta-model are
explained below.

Evolution Concepts: A model captures a situation at
a given time, which contains a set of contexts and a set of
subjects. The model can generally evolve by modifying the
contexts and by introducing new subjects. When the time
intervals are sufficiently small, the changes of the model are
assumed to be small. Yet the impact of such smaller changes
may still cover a large portion of the model. In order to show
that important security requirements are satisfied after some
change has been implemented, it is necessary to consider
how the change should be propagated. In establishing that,
the following concepts can be useful.

Requirements Engineering Concepts: A knowledge
context has a set of propositions. A proposition can be
assumed a fact or a rule, which is part of a given domain
context, or can be supported by a set of propositions in
an argument context. Both contexts and propositions are
concerned with a set of subject matters. A subject matter
in requirements engineering is either a resource, a process
or an actor. A resource is a subject that may have multiple
data states, a process is a subject that may have control
behaviours that can be described by domains representing
pre- or post-conditions, and an actor is a subject that
may want requirements and may conduct some processes.
A requirement relates an actor to a number of wanted
propositions.

Problem Frames Concepts: The Problem Frames ap-
proach [1] emphasises the relationship between three main
artefacts: a specification of a system (called machine), within
a particular problem world context, satisfies a given require-
ment. Fulfils between a specification S and a requirement
R can be represented by a logic entailment relation that
W, S + R, where W is the contexts in the situation. Some of
the domains are physical domains with causal behaviour [1].

Temporal Logic Concepts: The temporal logic we use
is a first-order predicate logic with discrete time. It has three
main sorts: time, event and fluent (time varying property).
Later in the discussion, we will explain how these concepts
are used to describe requirements engineering artefacts.

Security and Argumentation Concepts: An asset is a
resource that has desired value to the stakeholders (actors).
It must be protected according to a security goal from
damages that may be introduced by a potential attack. An
attacker wants to achieve anti-requirements, which would

90

Table I: Elementary Predicates of the Event Calculus
Predicate Meaning
Happens(a, t) Action a occurs at time ¢
Initiates(a, f, t) Fluent f starts to hold after action a at
time ¢
Fluent f ceases to hold after action a at
time ¢
Fluent f holds at time ¢
Time point t1 is before time point ¢2

Terminates(a, f, t)

HoldsAW(f, ©)
tl < t2

Clipped(t1, f,12) o Ja, t[Happens(a, t)A

(EC1)
t1 <t < t2 A Terminates(a, f,1)]
Declipped(t1, f,t2) &of Ja, t[Happens(a, t)A (EC2)
t1 <t < t2 A Initiates(a, f,t)]
HoldsAt(f,t2) — [Happens(a,t1)A
Initiates(a, f,t1) A tl < t2A (EC3)
—Clipped(t1, f,t2)]
—HoldsAt(f,t2) «— [Happens(a,t1)A
Initiates(a, f,t1) AN t1 < 2/ (EC4)
—Declipped(t1, f,t2)]
HoldsAt(f,t2) «— [HoldsAt(f,t1) ANtl < t2A (ECS)

—Clipped(t1, f,t2)]

—HoldsAt(f,t2) « [HoldsAt(f,t1) Atl < t2A (EC6)
—Declipped(t1, f,t2)]

Figure 2: Event Calculus Domain Independent rules

obstruct the fulfilment of the security goals. An attack
exploits vulnerability propositions inside the domains. By
challenging the domain knowledge with additional proposi-
tions, a rebuttal is effectively constructed to demonstrate that
the security requirements are not achievable under possible
attacks.

A mitigation may introduce further changes to the domain
knowledge such that the satisfaction argument of security
requirements is valid again. Both rebuttals and mitigations
are forms of arguments in different situations, hereby we
choose not to represent them as separate concepts.

V. THE EVENT CALCULUS

t First introduced by Kowalski and Sergot [31], the Event
Calculus (EC) is a system of logical formalism, which
draws from first-order predicate calculus. It can be used to
represent actions, their deterministic and non-deterministic
effects, concurrent actions and continuous change [32]. We
chose EC as our formalism, because it is suitable for describ-
ing and reasoning about event-based temporal systems such
as the Air Traffic Management systems. Several variations

0.
B Subiec
= name

8 Contex
0..1 | = name

claim context

o
subiect

concern
progositio

damaae

8 Araumer Bpomaig .y |ESituatio
= time
claim 0.1 0.1 Breconditic
g postconditiy
B Propositi¢ B PhvsicalDom: B Proces
= optativ
0.1
]
activitie
0..0.1 0t
E DomainAssumot B TemporalPredic B Attac]

= sof
= name
= evaluatio

= on

= name

= time .
= evaluatio

actior
taraet
operand

H vulnerabili
exploit

H Happen

H Specificatic

H Holds#

B State | |2 TemporalPredicate Ope
= name | - NO~
state N = ANC

-~ OF

0.1

8 Resours

B Quantifi
= variable

EASSEO , E Requireme}

0. protect

auantifie 0.t 0.1

H SecuritvReauiremt B ForA EExist

Fulfil
0.1
obstruct
B AntiReauireme

state

Figure 1: A ESR meta-model for Analysing Evolving Security Requirements

of EC have been proposed, and the version we have adopted
here is based on the discussions in [33].

The calculus relates events and event sequences to fluents,
or time-varying properties, which denote states of a system.
Table 1, based on [33], gives the meanings of the elementary
predicates of the calculus we use in this paper. The domain-
independent rules in Fig. 2, taken from [33], state that:
Clipped(tl, f,t2) is a notational shorthand to say that the
fluent f is terminated between times ¢1 and t2 (ECI1),
Declipped(t1, f,12) is another notational shorthand to say
that the fluent f is initiated between times ¢1 and t2 (EC2),
fluents that have been initiated by occurrence of an event
continue to hold until occurrence of a terminating event
(EC3), fluents that have been terminated by occurrence
of an event continue not to hold until occurrence of an
initiating event (EC4), and truth values of fluents persist until
appropriate initiating and terminating events occur (EC5 and
EC6).

Following Shanahan, we assume that all variables are
universally quantified except where otherwise shown. We
also assume linear time with non-negative integer values. In
EC, we follow the rules of circumscription in formalizing
commonsense knowledge [34], by assuming that all possible
causes for a fluent are given in the database and our
reasoning tool cannot find anything except those causes.

A. Describing ESR Models using the EC

In our approach to specifying event-based systems, re-
quirements are constraints on the combinations of fluents
capturing the required states of resources. Problem world
domains capture behaviours of processes that are described
by causality between pre- and post-conditions, called domain
obligations. We now define them more formally.

91

Definition 5.1: Observations consist of a finite conjunc-
tion of (—)HoldsAt predicates. Reference phenomena (I')
are observations describing the given state of the resources
or given action of the processes, while controlled phenomena
(') are observations describing the desired state of the
resources or triggering of actions. They are also captured
by the pre/post conditions of the process. A requirement is
expressed either as

o ground observations I, without any reference to the
given state of the resource or given action of the
processes, or

o as a relationship between the reference and the con-
trolled phenomena, such as a constraint of the form
I' = IV, or an action precondition axiom of the form
(=)Happens(f1,t) — I where the antecedent is an
occurrence of an action in the system (for example, to
say that when an event al happens at time ¢, the fluent
f1 must be true at ¢1).

For example, the requirement
HoldsAt(AircraftOnGround,t) AN 0 < t < 9 says
that the aircraft must be on the ground between
the timepoints O and 9 range; the requirement
HoldsAt(Airborne,t) — HoldsAt(TransponderOn,t)
says that as long as the aircraft remains airborne,
the transponder must be on; and the requirement
Happens(BreachSD,t) N —Happens(Clearance,t2) A
t < t1 < t2 — HoldsAt(AlarmRaised,tl) says that
as soon as the separation distance is breached, the alarm
should be raised until the clearance happens.

Since requirements tend to be about desired properties
of the system over time, they will be formulated in terms
of fluents holding, rather than in terms of (instantaneous)
event occurrences. In other words, they specify ‘what’ the

system should achieve rather than ‘how’ the specification or
processes achieve it.

Anti-requirements are requirements of an attacker, and
the system must ensure that those requirements are not
satisfiable. Since anti-requirements are also requirements,
they can expressed in a similar way. For instance, 3t -
HoldsAt(AircraftsCollide,t), is a requirement of an at-
tacker who wants to collide some aircraft.

B. Specifications/Obligations

We assume that a domain has the potential to generate
instances of events it controls: it may generate all, some or
none, of the event instances, even if that leads to undesired
states.

In order to see its significance, we will briefly discuss
some possible alternatives. In one other option, we may
assume that the specification by default does not generate
any event: In that case, if the specification describes events
that must be generated, the specification is closed; if the
specification describes events that may be generated, it
is impossible to prove any “liveness” property. Similarly,
we may assume that the specification by default generates
all events, and specifications should restrict certain event
occurrences. This again is not satisfactory for reasons similar
to those given above. Therefore we have to categorize events
into “must”, “must not” and “may”.

We therefore recognize three modes of describing spec-
ifications: in the Act mode, we describes events that must
be generated (using Happens); and in the Prohibit mode, we
describe events must not be generated (using Prohibit).

Prohibit(a, t1,t2) =

-3t - Happens(a,t) Atl <t < 2

(EC7)

In the third implicit mode, all other possible events are
left undescribed because their occurrence or non-occurrence
is assumed not to affect the requirement satisfaction.

In a closed specification, the union of “must” and “must
not” covers all possible event sequences of the software
(there is no event that may or may not happen). In a partially
open specification, occurrence or non-occurrence of at least
one event is not described: therefore there can be more than
one specification that fulfil the requirement.

Definition 5.2: A specification is expressed as a fi-
nite conjunction of the event occurrence constraints (V)
of the form (—)Happens(ai,t) A (m)HoldsAt(f,t) —
(—)Happens(az,t) where aq, as, t, and f are terms for
the action, time point, and fluent respectively.

Definition 5.3: A domain description in our approach to
ATM is expressed as event-to-condition and condition-to-
event causality. The first causality deals with what happens
to the fluents when events occur, and the second causality
deals with the domain properties that lead to the occurrence

92

of certain events. In the Event Calculus, the event-to-
condition causality is described as a finite conjunction posi-
tive effect axioms and negative effect axioms () of the form
Initiates(a, f,t) < II or Terminates(a, f,t) < II where
IT has the form (—)HoldsAt(f1,t)A- - -A(—)HoldsAt(fy, t)
and ¢, and f; to f, are terms for the time and fluents
respectively. The condition-to-event causality is described
as a finite conjunction of trigger axioms (As) of the form
Happens(a,t) — II. For example, the following statement
says that if the aircraft has transponder, an occurrence of
the event interogateTransponder has an effect of making
BroadcastACInfo true.

Initiates(interogateT ransponder, Broadcast ACIn fo,t)
«— HoldsAt(HasTranspnder,t)

Similarly, the following statement says that the fluent
OperatorHasWeatherInfo on becoming true, generates
the event sendWeatherInfo because of the functionality
SendWeatherInfo.

Happens(sendWeatherInfo,t) «—
HoldsAt(Operator HasWeatherInfo, t)\
—HoldsAt(Operator HasW eatherInfo,t — 1)

Note that the condition
—HoldsAt(Operator HasWeatherIn fo,t 1) s
necessary to prevent stuttering of the event sendWeath-
erInfo when the fluent OperatorHasWeatherinfo holds
continuously.

C. Important Properties

Before we describe the important properties, we will make
certain assumptions clear. First, these have to rely on the
consistency of the domain theory Y and observations I'
and I". Second, we assume uniqueness of fluent and event
names, meaning that no two names denote the same thing.
This uniqueness axiom is represented by €.

A simple specification in this approach is a proactive
specification that addresses a subtype of problem known
as Required Behaviour. In this type of problem, a spec-
ification is required to bring about certain states in the
system resources, without relying on the feedback from the
other processes. In such cases, the basic property of the
descriptions we want is:

DA ET

That is, given a theory of physical domains (3), a specifica-
tion (¥), and an appropriate deductive system, we want to
show that the requirements are satisfied non-trivially.

In more common cases, the system has to rely on the
feedback from the environment (A») and observations about
the environment (I") .

SATAA AT =T

D. Analysis
Finding vulnerabilities is done through logical abduction.

1) We first pose a logical abduction problem in order to
find all constructive hypotheses (A1) explaining how,
given the domain theory (X AT A Ay), the requirement
(I'") can be satisfied, i.e.

CIRC|%; Initiates, Terminates|A
CIRC[A1 A Ag; Happens] AT AQ =T

where A; is consistent with the domain theory. A; is a
partially ordered sequences of event occurrences that,
given the physical domains, leads to the requirement
being satisfied. The circumscription operator assumes
that no events other than those by A; and Ay may
occur (otherwise the requirement is not satisfied).
Therefore, A tells us events that must happen and
that may happen. Event occurrences that do not appear
in A; must not happen.

However, some of the hypotheses in A; may not
be “realistic”: for example, a scenario may assume
competence and co-operation of users to a level that
cannot be guaranteed. Furthermore, A; may also con-
tain stuttering events that can be eliminated without
affecting requirements satisfactions'.

The developer then identifies the ‘unrealistic’ hy-
potheses in Aj; and eliminates them by providing
further information about the problem world domains.
Similarly, event stuttering is removed by adding fur-
ther constraints (which is then used to weaken the
specifications). These are assertions, or mitigation, we
want the tool to consider.

When no vulnerabilities can be found, there are no
“internal” vulnerabilities.

Notice that ¥ is not circumscribed: it will have to
make explicit all events that must not happen. There-
fore, W describe all events that must happen, and
all events that must not happen, the remainder being
events that may happen.

2)

3)

E. Event Caclulus Reasoner

We choose Decreasoner to implement the verification
for the generated EC rules. Decreasoner translates the
EC rules into SAT formulae automatically, and invokes
Rel-Sat solver to check whether they are satisfiable, given
the bounded time range. In principle, abductive process may
not terminate if the goal cannot be satisfied; however, since
the time range is discrete and bounded, the tool forces a
termination when the time limit is reached. Therefore, it
is important to choose a reasonably large time range. This

IThis is often called “invariance under stuttering” (for example [35]).
Model checking techniques, known as “partial order reduction”, exploit this
property to reduce state space [36].

2These are vulnerabilities that can be found with the model.

I T

[SR=RRR e

1
1

13
14
15
16
17

18
19
20
21
22
23
24
25
26

27
28
29
30

93

grammar uk.ac.open.problem.Problem with uk.ac.open.Istar

import "platform :/resource/openome_model/model/openome_model.ecore” as
openome_model

generate problem "http ://open.ac.uk/problem”

ProblemDiagram: (“problem™ *:’ description=STRING)?
((nodes+=Node | links+=Link)) »;

Node:
name=ID (type=NodeType)?
(’:7 description=STRING)?
("{” (subproblem=ProblemDiagram | “see” “domain” problemRef=[Node] |
istar=Model | “see” “intention” istarRef=[openome_model::
Intention] |
(hiddenPhenomena+=Phenomenon (’,’ hiddenPhenomena+=Phenomenon))

) IO

enum NodeType :
REQUIREMENT="R” | MACHINE="M" | BIDDABLE="B” | LEXICAL="X" | CAUSAL="C" |
DESIGNED="D" | PHYSICAL="P";

Phenomenon :

(type=PhenomenonType)? name=ID (’:’ description=STRING) ?;
enum PhenomenonType :

UNSPECIFIED="phenomenon” | EVENT="event” | STATE="state";
Link :

from=[Node] (type=LinkType) to=[Node] (’{’ ph

Ph (", ph
Phenomenon)* *}°)? (’:’ description=STRING) ?;
enum LinkType:

INTERFACE="->" | REFERENCE="""" | CONSTRAINT="">":

Figure 3: Partial listings of the concrete syntax of the the
ESR meta-model in Figure 1

range, however, is not enlarged if a counter example can
already be found.

VI. OPENPF

This section explains how Event Calculus templates are
generated from Problem Frame diagrams using OpenPF.

A. Concrete Syntax

Figure 3 lists the most of concrete syntax for the Problem
Frames concepts in the EMF meta-model shown in Figure 1.
This concrete syntax is given in order to show the textual
representations of the meta-model, and also to indicate
that the root concept in the representation is the problem
diagram.

The syntax is composed of a number of BNF-like rules,
each defines one non-terminal at the left hand side and a
number of refinement parsable elements, including both non-
terminals and terminals. The words occurring as strings in
the rules are treated as keywords, which is only necessary
in the concrete syntax. For the same abstract syntax in
Figure 1, there can be more than one way to express the
concrete syntax. In this example, we try to express it using
intuitive keywords consistently. Comparing the graph-based
meta-model with the tree-based concrete syntax, one useful
feature of xtext is to use ID to provide shared references
inside other types.

An example of the ESR model is given in Figure 4.
As the example shows, the syntax for writing a problem
diagram is straightforward. First, the name of the problem
diagram (“Has Weather Data”) is defined (Lines 1-2). “Has
Weather Data” is a requirement node (indicated by R) and is
identified by HasWData. Aircraft is a causal domain with no

16

problem:
"Has-Weather—_Data”

HasWData R: “Has.Weather_Data”
Aircraft C

ATMSystem M: " Air_Traffic_Management_System”
Operator B: "ATC_Operator™
Operator —> ATMSystem: “a”
ATMSystem —> Aircraft: “b”

HasWData > Aircraft: "r”

© N YA L —

11
12
13
14
15
16

17

Figure 4: Full listings of one concrete example of the ESR 2

model

{ata.pf 6] lata.problem_diagram &2

57 Palette 13
NEEYEE
@ Machine
Designed
Domain
HasWData @ Biddable
F Domain

Has Weather Data @ Causal
Domain

Operator ATMSystem Aircraft

AC Operator A Traffc Management System

€3 Lexical
Domain

@ Requirement
@ Interface

I ® Reference
© Constraint

a: O!{InputWeatherData}
b: AS!{SendWeatherData}
r: A!l{HasWeatherData}

Figure 5: Problem Diagram: Has Weather Data

description. Air Traffic Management System is a machine
domain, whilst ATC Operator is a biddable domain. The
interface between the operator and ATM System is named
a, and the interface between ATM System and aircraft is
named b. The requirement constrains the aircraft domain,
and is named .

B. Diagramming

OpenPF also provides editor and automatic diagramming
of problem diagrams from the syntax given above. A prob-
lem diagram for the problem of sending weather data is
shown in Figure 5, together with a description of the events.

C. Generating Event Calculus Templates

Generating Event Calculus templates from the problem
diagram is done using the OMG Text-to-Model (Xtext) and
Model-to-Text transformation (Acceleo) framework inside
the Eclipse modelling Project. The expression syntax of
the Model-to-Text transformation is similar to that of OCL,
and the concrete syntax resembles the JavaScript language,
except that code generation tags are enclosed by square
brackets rather than by XML brackets.

First, it is necessary to determine the output file name
and generate a common header to include the predefined

18

2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

48
49
50
51
52
53
54
55
56
57

94

[module generate (' http ://open.ac.uk/problem’)/]
[template public generate(d: ProblemDiagram)]
[file (d.description.toString().concat(’.ec’),
load foundations/Root.e
load foundations/EC.e
[for (dom: Node | d.nodes)]

[for (hidden: Phenomenon | dom.hiddenPhenomena)]

[if (hidden.type.toString () = state’)]
fluent [hidden.name/]_[dom.name/]()

false)]

[/if]
[/for]
[/for]
[for (interface: Link | d.links)]
[for (shared: Phenomenon | interface.phenomena)]
[if (shared.type.toString() = 'event’)]
event [shared.name/]_[interface.description/]()
[/if]
[if (shared.toString() = ’state’)]
fluent [shared.name/]_[interface.description/]()
[/if]
[/for]
[/for]

[for (dom: Node | d.nodes)]
[if (dom.type.toString () <> 'R’)]

;——[dom . name/]——

[0/ time[] /]
[for (interface: Link | d.links)]
[if (interface.to = dom)]
[for (shared: Phenomenon | interface.phenomena)]
[if (shared.type.toString() = “event’)]
Happens ([shared .name/] _[interface.description/]() ,time),
[/if]
[if (shared.toString() = ’state’)]
HoldsAt ([shared .name/] _[interface.description/]() ,time),
[/if]
[/ for]
[7if]
[/for]
—
[for (interface: Link | d.links)]
[if (interface.from = dom)]
[for (shared: Phenomenon | interface.phenomena)]
[if (shared.type.toString () = ’event’)]
Happens ([shared .name/] _[interface.description/]() ,time+1),
[/if]
[if (shared.toString () = 'state’)]
HoldsAt ([shared .name/] _[interface.description/]() ,time+1),
[/if]
[/for]
[/if]
[/for].
[/if]
[/for]
range time 0 3
range offset 1 2
[/file]
[/template]

Figure 6: Part of listings of the code generation rules:
transforming from the ESR meta-model into EC

EC rules (Line 3-5). Names of fluents that are internal to
the domains are identified, suffixed with the domain names,
and declared (Line 9). Similarly, names of events and fluents
shared between domains are also identified, suffixed with the
domain names, and declared (Line 16, 19). This suffixing of
the fluent and event names ensures that it is possible to trace
the results of the reasoning tool back to specific parts of the
problem diagrams.

Apart from the common footer (Lines 54-55), the rest of
the template is pattern-based. Some of the patterns are now
discussed. A typical instance of the domain specification
(Definition 5.2) is if event el happens at time t, then another
event e2 happens at a time after t, t+1 (Lines 25-53).
Given the diagram matching this pattern, a transformation
is applied to generate the following rule snippet for the
template:

; —— Domain --
[time] Happens(el, t) ->
Happens(e2, t + 1).

Here the “[time]” denotes a universally quantified variable.
Note that this is a generic template in which one can change
the time delay between the two event occurrences. Generally
speaking, this pattern will put all events and fluents a domain
observes on the left-hand side, and all events and fluents a
domain controls on the right-hand side of an implication.

Formulae for event-to-fluent and fluent-to-event causali-
ties are also common (Definition 5.3). For this causality,
typically there is a domain with a fluent and two events,
where one of the events is observed by the domain, and the
other event is controlled by the domain. In such cases, the
pattern will produce Initiates and Terminates formulae, and
Happens formulae.

As a result of these transformations, syntactically correct
EC descriptions are generated, which can be further modified
by the tool users before analysing them.

VII. EXAMPLE ANALYSIS AND RESULTS

We now work through the example introduced in Sec-
tion III. First, we describe the abstract domain behaviour
in terms of its obligations. We begin by drawing a simple
diagram showing the problem world domains, their relation-
ships and the property the system needs to hold. The diagram
(Figure 5) shows that the operator sends weather information
to the aircraft using the ATM system.

A. Describing Specifications/Obligations

We then describe the behaviour of the domains in terms
of the events they observe and events they control. OpenPF
templates mentioned above produces the following descrip-
tions.

; -— AS1 —-
[time] Happens (InputWeatherData_a(),time) ->
Happens (SendWeatherData_b (), time+l).

When the ATM system observes the input, it will send
the weather information to the aircraft at the next time point.
Similar descriptions can be generated for the other domains.
For the operator, we may assume that when the operator is
told about weather information is available, s/he inputs the
information to the ATM system at the next time point.

; 01 —-- Operators —-
[time] Happens (TellWeatherInfo,time) ->
Happens (InputWeatherInfo, time+l).

; Al —— Aircraft —-
[time] Initiates (SendWeatherInfo_f (),

HasWeatherInfo_Aircraft (), time).

When the aircraft observes the weather information being
sent, the aircraft will has the aircraft information.

B. Describing Domain Behaviour

Let us suppose that the operator has the following be-
haviour.

; 02

[time] Initiates (ReceiveWeatherData,
WeatherData_Known, time).

; 03

[time] !'HoldsAt (WeatherData_Known, time)

95

& HoldsAt (WeatherData_Known, time +1)
Happens (InputWeatherData, time + 1).

->

The first statement says that receiving weather data by
the operator means that the weather data is known to the
operator. The second statement says that as soon as the
operator knows weather information, the InputWeatherData

event is generated.
In order to define the partial Behaviour of the aircraft, we
first define a few additional sorts.

fluent Collided (ac, ac)
fluent At (ac,pos)
event Move (ac, pos,pos)
fluent Avoid(pos)

The fluent Collided(ac,ac) is true when two aircraft col-
lided; the fluent At(ac,pos) is true when the aircraft is at the
position; the fluent Avoid(pos) is true when no aircraft is
at the position; and Move(ac,pos,pos) says that the aircraft
moves from one position to another.

[time, ac,pos,posl]
Initiates (Move (ac,pos,posl),At (ac,posl),time) .

[time, ac,pos,posl]
Terminates (Move (ac, pos,posl),At (ac,pos),time) .

[time, ac,pos,posl]

Happens (Move (ac,pos,posl),time) -> (pos<posl).
[time, pos,posl, ac]
HoldsAt (At (ac,pos),time) &
HoldsAt (At (ac,posl),time) -> (pos=posl).
[time, ac,acl, pos,posl]
HoldsAt (At (ac,pos),time+l) &
Initiates (Move (acl, posl, pos),

Collided(ac,acl),time) .

(ac!=acl) —->

[time, ac,acl, pos,posl]

'HoldsAt (At (ac,pos),time+l) &

Terminates (Move (acl, posl, pos),
Collided(ac,acl),time).

(ac!=acl) ->

[time, ac,acl]

HoldsAt (Collided (ac, acl),time) -> (ac!=acl).
[time, ac,acl]
HoldsAt (Collided (ac,

HoldsAt (Collided (acl,

acl),time) <->

ac),time) .

[time, ac,acl, pos,posl]

(time=0) -> (HoldsAt (At (ac,pos),time) &
HoldsAt (At (acl,posl),time) & (ac!=acl)
(pos!=posl)).

->

[time, ac,pos] HoldsAt (Avoid(pos),time) —->

'HoldsAt (At (ac,pos) ,time) .

The above formulae describe how planes move along
paths, and when happens when planes converge on a po-
sition. Depending on the weather information received from
the operator, various constraints can be placed on the flight
by stating positions that need to be avoided. For instance,
the following says that the position 1 should not be on the
flight path.

HoldsAt (Avoid(1),1).

C. Analysing Domain Obligation

First, we can check that there is at least one model of the
operator behaviour (O2 and O3) that satisfies its specification
(81). Here the tool finds several models including the
following:

gappens(ReceiveWeatherData(t),
éappens(InputWeatherData(g),
iappens(InputWeatherData(g),
Happens (SendWeatherData (f),
iHasWeatherData_Aircraft().
P

0) .
1).

2).
2).

At time 1, the operator receives the weather information,
which the operator inputs at the next time point. The weather
information is sent at time 2, and the aircraft has the weather

information at time point 3.

Next, we can check whether the operator behaviour can
fail to satisfy its obligation. Again, the tool finds several
models showing how the operator can fail to satisfy his/her
obligations, inc%uding the following:

0

WeatherDataKnown_Operator () .
Happens (ReceiveWeatherData (g),
1

Happens (ReceiveWeatherData (g),
2

Happens (ReceiveWeatherData (g),
3

P

0).
1).

2).

In one of the models, the operator may know the weather
information, and still receive weather information, but fails
to input the information to the ATM system. This is a case
of operator witholding the information. This is a rebuttal

generated by the tool.

The rebuttal shows that the domain behaviour allows the
o%erator to input the weather information without being told.
This of course poses a security risk, if the operator has
malicious intent. This calls for a strengthening of the domain
behaviour by stating that the operator will send if and only
if s/he was told about the weather information.

; 037
[time] !'HoldsAt (WeatherData_Known, time)
& HoldsAt (WeatherData_Known,time + 1)

Happens (InputWeatherData, time+1) .

<=>

In this case, the domain obligation is weaker than the domain
behaviour. Finally as a mitigation to this problem, we can
strengthen the domain obligations.

; o1’

[time] Happens (TellWeatherData,time) <->

Happens (InputWeatherData, time+l).

Once the domain behaviour and the obligations are strength-
ened, it is no longer possible to show that the operator
can fail to satisfy his/her obligation. The strengthening is
mitigation.

The security requirement to prevent collision can be
checked in the same way.

96

VIII. CONCLUSION

We have investigated some of the challenges of analysing
the security impact of evolutionary changes made to software
systems. First, we applied a meta-model of evolving security
requirements, which draws on concepts in requirements
engineering, security analysis, argumentation and software
evolution. We instantiated the meta-model using a formalism
of temporal logic, called the Event Calculus. We have
proposed a tool called OpenPF that generates templates
for Event Calculus descriptions of the evolving system, and
analyse them using a reasoning tool called Decreasoner.
The approach is illustrated with a simple example from an
Air Traffic Management system.

ACKNOWLEDGEMENT

Financial support of the SecureChange project, funded by
the European Union, is gratefully acknowledged. We thank
the industrial and academic partners of the SecureChange
project for providing case studies and feedback on ideas
leading to this work.

REFERENCES

[1] M. Jackson, Problem Frames: Analyzing and structuring
software development problems. Addison Wesley, 2001.
[2] C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave, “A
reference model for requirements and specifications,” IEEE
Softw., vol. 17, no. 3, pp. 37-43, 2000.
[3] D. L. Parnas and J. Madey, “Functional documents for com-
puter systems,” Sci. Comput. Program., vol. 25, no. 1, pp.
41-61, 1995.
[4] 1. Jureta, J. Mylopoulos, and S. Faulkner, “Revisiting the
core ontology and problem in requirements engineering,” in
RE ’08: Proceedings of the 2008 16th IEEE International
Requirements Engineering Conference. ~ Washington, DC,
USA: IEEE Computer Society, 2008, pp. 71-80.
[5] M. Hartong, R. Goel, and D. Wijesekera, “Meta-models for
misuse cases,” in CSIIRW °09: Proceedings of the 5th Annual
Workshop on Cyber Security and Information Intelligence
Research. New York, NY, USA: ACM, 2009, pp. 1-4.
[6] A. Susi, A. Perini, J. Mylopoulos, and P. Giorgini, “The tropos
metamodel and its use,” Informatica (Slovenia), vol. 29, no. 4,
pp- 401-408, 2005.
[7] A. van Lamsweerde, “Elaborating security requirements by
construction of intentional anti-models,” in ICSE '04: Pro-
ceedings of the 26th International Conference on Software
Engineering. Washington, DC, USA: IEEE Computer Soci-
ety, 2004, pp. 148-157.
[8] G.Elahi, E. S. K. Yu, and N. Zannone, “A modeling ontology
for integrating vulnerabilities into security requirements con-
ceptual foundations,” in ER, ser. Lecture Notes in Computer
Science, A. H. F. Laender, S. Castano, U. Dayal, F. Casati,
and J. P. M. de Oliveira, Eds., vol. 5829. Springer, 2009,
pp. 99-114.

(91

[10]

(11]

(12]

(13]

[14]

(15]

(16]

(17]

(18]

(19]

(20]

[21]

[22]

(23]

G. Beydoun, G. Low, H. Mouratidis, and B. Henderson-
Sellers, “A security-aware metamodel for multi-agent systems
(mas),” Inf. Softw. Technol., vol. 51, no. 5, pp. 832-845, 2009.

P. Savolainen, E. Niemela, and R. Savola, “A taxonomy
of information security for service-centric systems,” in EU-
ROMICRO °07: Proceedings of the 33rd EUROMICRO Con-
ference on Software Engineering and Advanced Applications.
Washington, DC, USA: IEEE Computer Society, 2007, pp.
5-12.

S.-W. Lee, R. Gandhi, D. Muthurajan, D. Yavagal, and G.-
J. Ahn, “Building problem domain ontology from security
requirements in regulatory documents,” in SESS ’06: Pro-
ceedings of the 2006 international workshop on Software
engineering for secure systems. New York, NY, USA: ACM,
2006, pp. 43-50.

P. Giorgini, F. Massacci, and N. Zannone, “Security and
trust requirements engineering,” in Foundations of Security
Analysis and Design I11, 2005, pp. 237- 272.

A. van Lamsweerde, “Elaborating security requirements by
construction of intentional anti-models,” in ICSE ’04: Pro-
ceedings of the 26th International Conference on Software
Engineering, Washington, DC, USA, 2004, pp. 148— 157.

A. Nhlabatsi, B. Nuseibeh, and Y. Yu, “Security requirements
engineering for evolving software systems: A survey,” Journal
of Secure Software Engineering, vol. 1, pp. 54-73, 2009.

P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani,
“Reasoning with goal models,” in Conceptual Modeling ER
2002, 2003, pp. 167-181.

R. S. Arnold, “Software change impact analysis,” Computer,
1996.

C. F. Kemerer and S. Slaughter, “An empirical approach
to studying software evolution,” IEEE Trans. Softw. Eng.,
vol. 25, pp. 493-509, 1999.

T. Eisenbarth, R. Koschke, and D. Simon, “Locating features
in source code,” IEEE Trans. Softw. Eng., vol. 29, pp. 210-
224, 2003.

R. Conradi and B. Westfechtel, “Version models for software
configuration management,” ACM Comput. Surv., vol. 30, pp.
232-282, 1998.

Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf,
“An architecture- based approach to self-adaptive software,”
IEEE Intelligent Systems, vol. 14, pp. 54-62, 1999.

A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll,
“Predicting source code changes by mining change history,”
IEEE Trans. Softw. Eng., vol. 30, pp. 574-586, 2004.

A. Egyed, “Fixing inconsistencies in uml design models,” in
Proceedings of the 29th international conference on Software
Engineering. 1EEE Computer Society, 2007.

C. Jones, “Software change management,” Computer, vol. 29,
pp.- 80-82, 1996.

97

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

P. Besnard and A. Hunter, “Argumentation based on classical
logic,” in Argumentation in Artificial Intelligence, 2009, pp.
133-152.

——, “Practical first-order argumentation,” in Proceedings
of the 20th national conference on Artificial intelligence -
Volume 2 Pittsburgh, Pennsylvania: AAAI Press, 2005.

C. L. Chesnevar, A. G. Maguitman, and R. P. Loui, “Logical
models of argument,” ACM Comput. Surv., vol. 32, pp. 337-
383, 2000.

G. Governatori, M. J. Maher, G. Antoniou, and D. Billing-
ton, “Argumentation semantics for defeasible logic,” J Logic
Computation, vol. 14, pp. 675-702, 2004.

I. Jureta, J. Mylopoulos, and S. Faulkner, “Analysis of multi-
party agreement in requirements validation,” in /7th IEEE
International Requirements Engineering Conference (RE’09),

Atlanta, GA, USA, 2009,, 2009, pp. 57 — 66.

1. Habli, W. Wu, K. Attwood, and T. Kelly, “Extending
argumentation to goal-oriented requirements engineering,” in
Advances in Conceptual Modeling Foundations and Appli-
cations, 2007, pp. 306-316.

C. B. Haley, R. C. Laney, J. D. Moffett, and B. Nuseibeh,
“Security requirements engineering: A framework for repre-
sentation and analysis,” IEEE Trans. Software Eng., vol. 34,
pp. 133-153, 2008.

R. Kowalski and M. Sergot, “A logic-based calculus of
events,” New Gen. Comput., vol. 4, no. 1, pp. 67-95, 1986.

M. Shanahan, “The event calculus explained,” Lecture Notes
in Computer Science, vol. 1600, pp. 409—430, 1999.

R. Miller and M. Shanahan, “The event calculus in classical
logic - alternative axiomatisations,” Electronic Transactions
on Articial Intellligence, vol. 3, pp. 77-105, 1999.

J. McCarthy, Formalization of common sense, papers by John
McCarthy edited by V. Lifschitz. Ablex, 1990.

L. Lamport, “What good is temporal logic?” in IFIP
Congress, 1983, pp. 657-668.

D. Peled and T. Wilke, “Stutter-invariant temporal properties
are expressible without the next-time operator,” Inf. Process.
Lett., vol. 63, no. 5, pp. 243-246, 1997.

