
Using Problem Frames with Distributed Architectures:
A Case for Cardinality on Interfaces

Charles B. Haley
The American University of Paris, Paris, France

The Open University, Milton Keynes, UK
charles [at] the-haleys.com

Abstract

Certain classes of problems amenable to description
using Problem Frames, in particular ones intended to be
implemented using a distributed architecture, can benefit
by the addition of a cardinality specification on the
domain interfaces. This paper presents an example of
such a problem, demonstrates the need for relationship
cardinality, and proposes a notation to represent
cardinality on domain interfaces.

1. Introduction

In a Problem Frames analysis [3, 4], domains share
phenomena at their interfaces. One of the domains in the
analysis is the machine domain, which represents the
software to be constructed by the developer. Phenomena
are the externally visible characteristics of the domains.
The phenomena visible at the machine domain’s
interfaces drive much of the analysis process.

The existence of certain phenomena can be
predetermined by purchased products to be used in the
system [1] or by considering architectural implications
early in the requirements cycle [6, 7]. Hall et al [2] argued
for extending Problem Frames to take architectural
considerations within the machine domain into account,
thus incorporating domain knowledge into the analysis.
This paper takes the argument one step further, arguing
that there are architectural considerations that affect the
propagation of phenomena between domains, and that it is
helpful to explicitly note these considerations in the
diagrams.

In a ‘standard’ Problem Frames analysis, phenomena
are considered shared and instantaneous. All domains that
participate in a given interface share the phenomena;
participation is a relationship. The question of cardinality
of the relationship does not arise, because the phenomena
are always shared by all. However, a class of problems
exists wherein it is convenient to define more precisely

how phenomena are shared over an interface. The case
comes up when the implementation of a system is to
contain redundancy or be partitioned into semi-
autonomous units, such as what occurs when using a
distributed architecture. The originating domains may
need to know about how phenomena are propagated,
either for correctness or for efficiency. Using explicit
connection domains can resolve the problem, but they
introduce complexity. The author argues that by noting
cardinality on the interfaces, appropriate information can
be included in the analysis without a significant increase
in complexity.

Section 2 of this paper describe a small lighting
control system using Problem Frames. Section 3 presents
one possible implementation, showing a case where the
current shared phenomena notions do not expose certain
difficulties. Section 4 proposes an extension to Problem
Frames notation to correct the problem, and Section 5
presents conclusions.

2. The Lighting System

2.1. The Problem Statement

A lighting control system is to be built that conforms
to the following problem statement, provided by the firm
constructing the building.

The architect wishes to have a lighting control system
for a building. From the user’s perspective, the system
consists of switches and lighting units (lights) associated
with a room. When a user actuates a switch, the
associated light or lights in the room are turned on or off.

The architect requires the use of up/down momentary
contact switches. A momentary contact switch must cause
its lighting units to change to the state indicated by the
switch’s motion, if needed: up turns the lights on if they
are not already on and down turns the lights off if they
are not already off.

The system is to be built using networked components
and to include redundancy where appropriate.

Discussions with the architect and the vendors of the
lighting equipment establish the following facts:
1. Switches and lighting units are connected by a

network. They are not able to converse directly with
each other.

2. A room is a logical concept, covering from part of a
‘real room’ to multiple floors of a building.

2.2. The Problem Diagrams

The following is the context diagram for the
environment. It appears to describe a straightforward
commanded behavior problem.

Lighting
Units Switches Machine

The problem decomposes into two commanded

behavior subproblems1. The first maps switch events to
the rooms that they control, using a lexical domain as a
Switches Rooms map. The second maps room events to
the lighting units in that room, using a Rooms Lights
map.

The first subproblem, Control Room Lights, is:

 Switch
Machine

Control
Room
Lights

Lights in
Room C

Switch
C

Switches
Rooms

X

When a switch is
activated

and the switch
is associated
with a room

then the state of
all the lights in

that room is
changed as needed

satisfying the
requirement

1 The simple workpiece problems needed to maintain the lexical

domains are not discussed in this paper.

The second subproblem, Control Lighting Units, is:

 Lights
Machine

Control
Lighting

Units

Lighting
units C

Control
Room Lights

 C

Rooms
Lights

X

When a switch
for a room is

lifted or lowered

and lights are
associated with

the room

then the state of
the lights in that

room are changed
as needed

satisfying the
requirement

Looking at the diagrams, we see that lifting or

lowering a switch causes an event that is a phenomenon
shared with the Switch Machine. The machine determines
which logical room is to have its lights changed, and is
the source of a phenomenon shared with the Lights
Machine, as shown in the second diagram. The second
machine determines which lighting units are involved,
and then is the source of phenomena shared with the
appropriate lighting units.

3. A Possible Implementation

One can imagine constructing this system using a Jini-
like distributed architecture [5]. In a Jini-based system,
when a switch is actuated it uses a name service to find an
appropriate service to process the event. Maintaining
correspondence with the problem diagrams, the switch
will next find the switch machine. The switch machine
will use its map to determine which rooms need to know
about the switch actuation, and then use the name service
to find the lights machine to contact. A diagram of a
simple implementation would be:

Network

Switches

Name
Service

Lights

Switch
Machine

Lights
Machine

If we consider the name service to be part of the

network, then the above implementation corresponds very
closely to the subproblem diagrams.

However, one might choose a different implementation
for a larger building. If the building has multiple floors,
then for performance we might put switches and lights
machines on each floor. To improve reliability, we might
put multiple machines of the same type on each floor,
where any instance of a machine type can substitute for
any other (i.e. introduce redundancy). Such an
implementation might look like:

2nd floor
vestibule

Offices

1st floor
vestibule

ground
floor

Offices

Offices

Offices

Offices

Offices

S: Switch Machine L: Lights Machine

N: Name Server Network

S S

L

N

L L

N

N

S S

S S

L L

L

To complicate things a bit more, assume the existence

of a logical room consisting of lights in all three of the
vestibules.

Assume that the architect specifies the following two
rules:
1. A switch on a given floor can select either of the

switch machines on its floor, choosing at random. If
that machine does not answer, another machine is
tried.

2. Either of the lights servers on a floor can control the
lights on that floor. The server to use is chosen at
random. If that machine does not answer, another
server is tried.

Therefore, when a user lifts a vestibule switch on the
ground floor, the switch chooses either of the switch
servers on the ground floor. That switch server
subsequently must contact either one of the two light
servers on each floor, requesting that the lights be turned
on.

The problem diagrams shown in Section 2.2 do not
express the added complexity of the multiple servers, and
thus it is difficult to reason about the system’s behavior
under certain conditions. For example, analyzing the
effects of particular concerns such as initialization, fault
recovery, and component maintenance pose problems.
Adding explicit connection domain subproblems to the

problem can show the missing behavior, but the domains
also add significant additional complexity.

4. Extension of Problem Frames Notation

The deficiency in Problem Frames notation exposed by
the above example is the inability to accurately specify a
limited many relationship on an interface. In the example,
from the point of view of the switch there are many
candidates for the switch machine, but only one of them is
to be used. From the point of view of the switch machine,
there are many candidate lights machines, where
potentially many of them are to be used. These
relationships have a form of cardinality.

Relationships on an interface are directed. All
phenomena have a source domain and some number of
destination domains. From the point of view of a source
or a destination, there can be from one to N domains on
the other side of the relation. Thus, the cardinality of a
relationship can be described as follows:

N(b) M(c): there are N sources of phenomena on
an interface where b sources are to be considered
interchangeable, and M destinations for the
phenomena where c destinations participate.

For convenience, if the parenthesized portion is
omitted, it is assumed to be identical to the number that
would be in front of it. Thus 1 N is the same as 1(1)
N(N).

Referring to the more complicated example above, the
cardinality of the switch to switch machine interface is
N(1) 2(1). The left side is N(1) because only one of the
N switches participates in a given switch actuation.
However, the example specifies that there are two
interchangeable switch machines available to the switch,
and the switch must choose which one to use. Thus, the
cardinality of the switch machine is 2(1).

Still referring to the example, the cardinality of the
switch machine to lights machine interface is 6(1) 6(3).
There are six switch machines on three floors, but only
one of them can be the source of a phenomenon on the
interface. There are three groups of two identical light
machines, thus three of them participate as destinations of
a phenomenon.

Finishing the example, we see that the cardinality of
the lights machine to lighting units interface is 2(1)
M(M) (or 2(1) M). Two lights machines can share
phenomena with any given lighting unit, but only one at a
time. Each lighting unit is an individual, meaning that all
M lighting units must share phenomena with the given
lights machine.

Clearly one would not use such specific notations on a
problem diagram unless the numbers are fixed in the
problem statement, which is not the case in this example.
The switches to switch machine cardinality is better

written as N(1) M(1). The switch machine to lights
machine cardinality is N(1) M(c s.t. c≤M) and the
lights machine to lighting units is N(1) M.

Applying these cardinality notes to the subproblem
diagrams, we arrive at:

 Switch
Machine

Control
Room
Lights

Lights in
Room C

Switch
C

Switches
Rooms

X

When a switch is
activated

and the switch
is associated
with a room

then the state of
all the lights in

that room is
changed as needed

satisfying the
requirement

N(1)

M(1)

N(1)

M(c)

and

 Lights
Machine

Control
Lighting

Units

Lighting
units C

Control Room
Lights C

Rooms
Lights

X

When a switch in
a room is lifted or

lowered

and lights are
associated with

the room

then the state of
the lights in that

room are changed
as needed

satisfying the
requirement

N(1)

M(c)

N(1)

M

5. Conclusions

Adding cardinality notations to Problem Frames
diagrams conveys information about how phenomena are
to propagate. The engineers responsible for implementing
the system would use this information to ensure that the
system behaves as desired and to verify correctness in the
face of errors, such as partial loss of power and machine
failure. Using cardinality avoids the complexity of adding
connection domains to provide equivalent information.

References

1. B. Boehm, "Requirements That Handle IKIWISI, COTS,
and Rapid Change," IEEE Computer, vol. 33, no. 7, Jul, pp. 99-
102, 2000.

2. J. G. Hall, M. Jackson, R. Laney, B. Nuseibeh, and L.
Rapanotti, "Relating Software Requirements and Architectures
Using Problem Frames," in Proceedings of the IEEE Joint
International Requirements Engineering Conference (RE'02).
Essen, Germany, 9-13 Sep 2002.

3. M. Jackson, Software Requirements & Specifications.
Addison Wesley, 1995.

4. M. Jackson, Problem Frames. Addison Wesley, 2001.

5. "Jini Network Technology,"
http://wwws.sun.com/software/jini/. Sun Microsystems, 1999-
2002. (31/01/2003).

6. B. Nuseibeh, "Weaving the Software Development Process
Between Requirements and Architecture," in From Software
Requirements to Architectures (STRAW '01). 23rd International
Conference on Software Engineering, ICSE 2001. Toronto,
Ontario, Canada, 12-19 May, 2001.

7. B. Nuseibeh, "Weaving Together Requirements and
Architectures," IEEE Computer, vol. 24, no. 3, March, pp. 115-
119, 2001.

