

 i

Arguing Security: A Framework for
Analyzing Security Requirements

Charles B. Haley BA, MS

A thesis submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Computer Science

Department of Computer Science

Faculty of Mathematics and Computer Science
The Open University

March 2007

ii

 iii

Abstract

When considering the security of a system, the analyst must simultaneously work with two

types of properties: those that can be shown to be true, and those that must be argued as being

true. The first consists of properties that can be demonstrated conclusively, such as the type of

encryption in use or the existence of an authentication scheme. The second consists of things

that cannot be so demonstrated but must be considered true for a system to be secure, such as

the trustworthiness of a public key infrastructure or the willingness of people to keep their

passwords secure. The choices represented by the second case are called trust assumptions, and

the analyst should supply arguments explaining why the trust assumptions are valid.

This thesis presents three novel contributions: a framework for security requirements

elicitation and analysis, based upon the construction of a context for the system; an explicit

place and role for trust assumptions in security requirements; and structured satisfaction

arguments to validate that a system can satisfy the security requirements. The system context is

described using a problem-centered notation, then is validated against the security requirements

through construction of a satisfaction argument. The satisfaction argument is in two parts: a

formal argument that the system can meet its security requirements, and structured informal

arguments supporting the assumptions exposed during argument construction. If one cannot

construct a convincing argument, designers are asked to provide design information to resolve

the problems and another pass is made through the framework to verify that the proposed

solution satisfies the requirements. Alternatively, stakeholders are asked to modify the goals for

the system so that the problems can be resolved or avoided. The contributions are evaluated by

using the framework to do a security requirements analysis within an air traffic control

technology evaluation project.

iv

 v

Author’s Declaration

Much of the material in this thesis appears in the following papers & books.

• Haley, C. B., Laney, R. C., Moffett, J. D., & Nuseibeh, B. (2003). "Using Trust Assumptions in
Security Requirements Engineering," in The Second Internal iTrust Workshop On Trust
Management In Dynamic Open Systems. Imperial College, London, UK, 15-17 Sep.

• Haley, C. B., Laney, R. C., Moffett, J. D., & Nuseibeh, B. (2004). "Picking Battles: The Impact of
Trust Assumptions on the Elaboration of Security Requirements," in Proceedings of the Second
International Conference on Trust Management (iTrust'04), vol. 2995. St Anne's College, Oxford,
UK: Lecture Notes in Computer Science (Springer-Verlag), 29 Mar - 1 Apr, pp. 347-354.

• Haley, C. B., Laney, R. C., & Nuseibeh, B. (2004). "Deriving Security Requirements from
Crosscutting Threat Descriptions," in Proceedings of the Third International Conference on Aspect-
Oriented Software Development (AOSD'04). Lancaster, UK: ACM Press, 22-26 Mar, pp. 112-121.

• Moffett, J. D., Haley, C. B., & Nuseibeh, B. (2004). "Core Security Requirements Artefacts,"
Department of Computing, The Open University, Milton Keynes, UK, Technical Report 2004/23,
June.

• Haley, C. B., Laney, R. C., Moffett, J. D., & Nuseibeh, B. (2004). "The Effect of Trust Assumptions
on the Elaboration of Security Requirements," in Proceedings of the 12th International
Requirements Engineering Conference (RE'04). Kyoto, Japan: IEEE Computer Society Press, 6-10
Sep, pp. 102-111.

• Haley, C. B., Moffett, J. D., Laney, R., & Nuseibeh, B. (2005). "Arguing Security: Validating
Security Requirements Using Structured Argumentation," in Proceedings of the Third Symposium
on Requirements Engineering for Information Security (SREIS'05) held in conjunction with the 13th
International Requirements Engineering Conference (RE'05). Paris, France, 29 Aug.

• Haley, C. B., Laney, R. C., Moffett, J. D., & Nuseibeh, B. (2006). "Using Trust Assumptions with
Security Requirements," Requirements Engineering Journal, vol. 11 no. 2 (April), pp. 138-151.

• Haley, C. B., Laney, R. C., Moffett, J. D., & Nuseibeh, B. (2006). "Arguing Satisfaction of Security
Requirements," in Integrating Security and Software Engineering: Advances and Future Vision, H.
Mouratidis & P. Giorgini, Eds.: Idea Group.

• Haley, C. B., Moffett, J. D., Laney, R., & Nuseibeh, B. (2006). "A Framework for Security
Requirements Engineering," in Proceedings of the 2006 Software Engineering for Secure Systems
Workshop (SESS'06), co-located with the 28th International Conference on Software Engineering
(ICSE'06). Shanghai, China, 20-21 May.

All of the work presented in this thesis describes original contributions of the author, with two exceptions:

• The work on representing security requirements as constraints, described in Chapter 5, was done in
collaboration with Jonathan D. Moffett.

• The industrial experience, presented in Chapter 7, by necessity (and perhaps by definition) involved
other industrial project members in the construction and evaluation of the contexts, goals, and
arguments.

vi

Acknowledgements

I wish to thank my supervisors Bashar Nuseibeh and Robin Laney for their invaluable

guidance, reviews, and encouragement to finish this thesis; Jonathan Moffett for his generous

support, ideas, and very pertinent (and sometimes pointed) criticisms; and Michael Jackson for

his support and for occasionally encouraging me to rejoin the real world.

A special thanks goes to my family: to my wife and colleague Debra Haley for thoughtful

discussion, criticism, editorial corrections, and especially for her continuous support and

understanding during this process; to my sons David and Steven for their encouragement, their

pride in my taking on this challenge, and for finding such humor in “Dad, do your homework!”;

and (although they will never know their impact) to my cats Lizzie & Tasha for sitting on my

lap, shoulders, or keyboard when I wanted to write, forcing me to think instead.

The financial support of the Leverhulme Trust is gratefully acknowledged, as is the support

of the ELeGI EU project number IST-002205.

Finally, I acknowledge the support of The Department of Computing of The Open

University. Without the department giving me time and encouragement, this thesis would not

have been completed.

 vii

Table of Contents

Abstract.. iii

Author’s Declaration ... v

Acknowledgements.. vi

Table of Contents ... vii

Table of Figures... xi

Chapter 1. Introduction... 13

1.1 Criterion One – Clarity of Security Requirements .. 15
1.1.1 Security Requirements as Non-Functional Requirements 15
1.1.2 Security Requirements & Context 16

1.2 Criterion Two – Incorporation of Assumptions about Behavior ... 17
1.3 Criterion Three – Satisfaction of Security Requirements.. 18
1.4 Contributions... 19
1.5 Novelty of the Contributions... 19
1.6 Research Methodology.. 20

1.6.1 Option 1 – Validation by Replaying an Existing Case Study 21
1.6.2 Option 2 – Validation using Constructed Examples 21
1.6.3 Option 3 – Validation by Testing on a Live Project 22

1.7 Publication History of Contributions .. 22
1.8 Structure of this Thesis.. 23

Chapter 2. Background.. 25

2.1 Problem Frames .. 25
2.1.1 Requirements and Specifications 27
2.1.2 Indicative vs. Optative Descriptions 29

2.2 Definitions... 29
2.2.1 Security and Safety 30
2.2.2 Asset, Threat & Vulnerability 31
2.2.3 Validation & Verification 32
2.2.4 Functional and Non-Functional Requirements 35

viii

2.3 Parallel Elaboration of Requirements & Architecture ...36

Chapter 3. Related Work ...39

3.1 Context & Assumptions...39
3.1.1 The i* Framework 40
3.1.2 KAOS 42
3.1.3 SeDAn 43
3.1.4 Other Work 45

3.2 Expressing Security Requirements ..47
3.2.1 Security Requirements as Security Functions 48
3.2.2 Security Requirements as Non-functional Requirements 49
3.2.3 Security Requirements from Privacy & Trust 50
3.2.4 Other Portrayals of Security Requirements 51

3.3 Use of Design Rationale and Argument Capture for Verification...53
3.3.1 Design Rationale 53
3.3.2 Safety Cases 54
3.3.3 Problem Domain Analysis 54

3.4 Chapter Summary ..55

Chapter 4. Trust Assumptions...57

4.1 Definition of Trust Assumptions ...58
4.1.1 Purpose of Trust Assumptions 58
4.1.2 The ‘Trust’ in Trust Assumptions 59
4.1.3 Representation of Trust Assumptions 60
4.1.4 Trust Assumptions as Domain Restrictions 61

4.2 Worked Example ...62
4.2.1 SET Overview 62
4.2.2 SET-Identified Security Assumptions 63
4.2.3 The Initial Problem Diagram 64

4.3 Chapter Summary ..69

Chapter 5. A Security Requirements Framework ...71

5.1 Framework vs. Process ..72

 ix

5.2 Definition of Security Goals ... 73
5.3 Definition of Security Requirements... 76
5.4 From Security Goals to Security Requirements .. 77
5.5 Security Requirements and Context .. 79
5.6 Development Artifacts and Dependencies .. 80

5.6.1 Core Artifacts 80
5.6.2 Support Artifacts 81
5.6.3 Dependencies between Artifacts 81

5.7 Framework Overview.. 82
5.7.1 Stage 1: Identify Functional Requirements 83
5.7.2 Stage 2: Identify/Revise Security Goals 83
5.7.3 Stage 3: Identify/Revise Security Requirements 86
5.7.4 Stage 4: Verify Security Requirements against System Context 87

5.8 Iteration ... 88
5.9 Worked Example... 90

5.9.1 Stage 1: Identify Functional Requirements 90
5.9.2 Stage 2: Identify/Revise Security Goals 91
5.9.3 Stage 3: Identify/Revise Security Requirements 92

5.10 Chapter Summary ... 93

Chapter 6. Security Requirement Satisfaction Arguments .. 95

6.1 Trust Assumptions & Arguments.. 95
6.1.1 The Outer Argument 96
6.1.2 The Inner Arguments 96

6.2 Worked Example... 100
6.2.1 Constructing Satisfaction Arguments 101
6.2.2 Removing Rebuttals by Adding Secondary Security Goals 107

6.3 Chapter Summary ... 108

Chapter 7. Evaluation.. 111

7.1 Project Overview... 111
7.1.1 Background – Air Traffic Control 112

x

7.1.2 Separation 112
7.1.3 Active versus Passive Surveillance 113
7.1.4 Increasing Use of Passive Surveillance 114
7.1.5 Using ADS-B to Achieve the Benefits 116

7.2 The Security Requirements Analysis...116
7.2.1 The First Iteration 116
7.2.2 The Second Iteration 123
7.2.3 The Third Iteration 125

7.3 Lessons Learned ..125
7.4 Conclusions ...127

Chapter 8. Discussion & Future Work ...129

8.1 Questions & Challenges ..130
8.1.1 Problem vs. Solution Space 130
8.1.2 Traceability of Secondary Security Functional Requirements 130
8.1.3 Representing all Security Requirements as Constraints 131
8.1.4 Representing Required Behavior as Constraints 131
8.1.5 Consistency of Trust Assumptions 131
8.1.6 Trust Assumptions - Creation of Obligations 132
8.1.7 Risk Analysis 132
8.1.8 Satisfaction Arguments – Constructing Outer Arguments 133
8.1.9 Satisfaction Arguments – Constructing Inner Arguments 133
8.1.10 Other Satisfaction Arguments in the Framework 134

8.2 Future Work...134
8.2.1 The Inner Argument 134
8.2.2 Other Future Work 137

8.3 Conclusion...138

References..139

 xi

Table of Figures

Figure 2-1 – A basic Problem Frames diagram.. 26
Figure 2-2 – Twin Peaks .. 37
Figure 4-1 – Simplified SET processing flows .. 63
Figure 4-2 – Purchase problem .. 64
Figure 4-3 – Purchase problem (second try) .. 67
Figure 4-4 – Purchase problem (third try).. 68
Figure 5-1 – Example Problem Diagram.. 79
Figure 5-2 – Security Requirements Core Artifacts (Class diagram)... 80
Figure 5-3 – Security Requirements Process Overview (Activity Diagram) ... 82
Figure 5-4 – Initial HR problem diagram... 90
Figure 5-5 – Problem with security requirements added.. 93
Figure 6-1 – Generic Toulmin-form argument... 97
Figure 6-2 – Language Grammar ... 99
Figure 6-3 - Problem diagram for the HR data retrieval application.. 101
Figure 6-4 – New HR staff problem diagram... 104
Figure 6-5 – Proof that the security argument is satisfied.. 105
Figure 7-1 – System context – Iteration one .. 117
Figure 7-2 - Context with constrained requirement.. 119
Figure 7-3 - The outer argument (proof) .. 121
Figure 7-4 - Argument for AP!RECV AP!XMIT ... 122
Figure 7-5 - Argument for AP!XMIT R!SEND .. 122
Figure 7-6 - Argument for R!SEND M!POSREPORT ... 122
Figure 7-7 – Argument for M!POSREPORT ATC!HASPOS... 122
Figure 7-8 - Argument for AP!RECV.. 122
Figure 7-9 – Context diagram, iteration two .. 123
Figure 7-10 – Arguments for the second iteration.. 124

xii

 13

Chapter 1. Introduction

Over the last few years, reports of software security failures have become commonplace.

Statistics from the Software Engineering Institute’s CERT Coordination Center, a center of

internet security expertise, show that the number of reported application vulnerabilities rose

from 171 in 1995 to 5,990 in 2005 (CERT, 2006). The sources of problems are diverse. One

source is programming errors; in 2003, one internet worm named Blaster, exploiting a flaw in

Microsoft’s Windows operating system, reportedly infected approximately 500,000 computers

(Gallagher, 2003). “Estimates are that it [Blaster] cost approximately $1.3 billion to correct and

in lost productivity” (Ibid). Another source is not looking at security requirements of the

complete system. For example, CardSystems Solutions exposed details of some 40 million

credit cards by storing unneeded transaction history data where hackers could get to it (Dash,

2005); this visible storage was part of their system but not part of their security planning. The

resulting loss has not been disclosed, but is known to be in excess of several millions of dollars

(Federal Trade Commission, 2006). These two examples strongly suggest that improving

software-based system security would have a significant financial impact.

This thesis addresses the second source of security problems: the failure to consider security

requirements of the complete system, or said another way, the failure to obtain adequate

security requirements for a system. By adequate security requirements, we mean requirements

that if respected, lead to a system’s security goals being satisfied. Adequate general

requirements have been shown to have a very positive impact on the success of projects: for

examples see the Standish Group’s Chaos reports (Standish Group, 1995, 1999, 2001), and the

introduction to Mead et al. (Mead, Hough, & Stehney, 2005). Although the empirical evidence

is not yet unequivocal, there is evidence that adequate security requirements will have as

positive an impact on system security as adequate general requirements have on system success

Chapter 1. Introduction

14

(Mead, Hough et al., 2005). The CLASP process (Comprehensive Lightweight Application

Security Process), co-authored by John Viega (Viega & McGraw, 2002; Viega, 2005a, b),

emphasizes the importance of security requirements, saying that one should “[e]nsure that

security requirements have the same level of ‘citizenship’ as all other ‘must haves.’” (Secure

Software Inc., 2006)

Before continuing further, we must agree on what is meant by system. In this thesis, the word

system includes the software, and in addition the people who use the software and all the bits

and pieces around the software (computers, printers, etc.). We are dealing with requirements,

and this definition of system is consistent with common usage in requirements engineering. For

example, Zave and Jackson say that “we use ‘system’ only to refer to a general artifact that

might have both manual and automatic components, such as an ‘airline reservation system’.”

(1997). Van Lamsweerde uses the word similarly: “The target system is not just a piece of

software, but also comprises the environment that will surround it; […].” (2000). Going a bit

further back, Swartout & Balzer include the pipes & bins in the system when describing their

package router example (1982). In summary, we can say that requirements engineering is

charged with providing detailed & relevant information about the requirements that a system is

to satisfy. Our usage of system is consistent with this.

We claim that the adequacy of security requirements can be evaluated using three criteria.

The first criterion is clarity: one must have a clear understanding of what the security

requirements mean, and their effects within the system context in which they apply. The second

is incorporation of assumptions about behavior: security requirements must take assumptions

about the behavior of objects found in the system into consideration. The third is satisfaction:

one must be able to determine whether the security requirements satisfy the security goals, and

whether the system can satisfy the requirements. We propose three contributions to assist a

requirements engineer with developing security requirements that satisfy these criteria. The first

is a security requirements framework, incorporating system context and providing a practical

definition of security requirements. The second is an explicit place and role for assumptions,

concentrating on their role in security requirements satisfaction arguments. The third is the use

 1.1. Criterion One – Clarity of Security Requirements

 15

of formal and informal structured arguments to validate that a system can satisfy its security

requirements. The second and third contributions are incorporated into the first, our security

requirements framework, facilitating an understanding of eliciting, validating, and verifying

security requirements and other artifacts.

We explore these three criteria in Sections 1.1 – 1.3, following. The contributions are further

discussed in Section 1.4 of this introduction and, of course, throughout the remainder of this

thesis.

1.1 Criterion One – Clarity of Security Requirements

Security needs arise when stakeholders establish that some objects involved in a system, be

they tangible (e.g., cash) or intangible (e.g., information), have value. Such objects are termed

assets (ISO/IEC, 1999c), and the stakeholders naturally wish to protect themselves from any

harm that might come from abuse of these assets. Security goals express this desire, describing

the involved asset(s) and the harm to be prevented. The usual approach is to treat these security

goals as non-functional requirements. The question to answer is whether this approach results in

clear security requirements that respond to the needs of the system.

1.1.1 Security Requirements as Non-Functional Requirements

Security requirements have traditionally been considered to be non-functional quality

requirements ((Chung, Nixon, Yu, & Mylopoulos, 2000; Devanbu & Stubblebine, 2000;

Firesmith, 2004; Glintz, 2005) and many others), meaning that like other kinds of quality

requirements (e.g., performance, usability, cost to run), they do not have simple yes/no

satisfaction criteria. Instead, one must somehow determine whether a quality requirement has

been satisficed (satisfied well enough) (Mylopoulos, Chung, & Nixon, 1992). This is difficult in

general, and security requirements present some additional challenges. First, once one descends

from the very general and obvious statements (e.g., ‘the system should be secure’), instead of

talking about what is to happen, people tend to think about and express security requirements in

terms of things that are to be prevented. Verifying that something is prevented can be likened to

Chapter 1. Introduction

16

proving a negative; it is very difficult, if not impossible, to show that there are no counter-

examples. Second, for security requirements, the tolerances on ‘satisfied enough’ are much

smaller, usually approaching zero; stakeholders want criteria for security requirements to be

very close to yes/no. Third, the amount of time and money that stakeholders might be willing to

dedicate to satisfying a security requirement can depend on the risk and impact of a security

failure; one cannot justify a large expense to protect something of low direct or indirect value.

One must be able to connect specific development & operational expense to the requirements

being satisfied, in order to determine cost/benefit information.

Expressing security requirements in a positive sense, similar to functional requirements,

would reduce the difficulties described above. Functional requirements describe what is to

happen, not what is not to happen, helping the implementers understand what they are to do.

Tolerances are (in theory) simpler; functional requirements have binary satisfaction criteria,

either the function happens or it does not, and they can have test criteria to determine what ‘the

function happens’ means. The cost of making something happen is easier to measure than the

cost of making something not happen, facilitating cost/benefit analysis. Expressing security

requirements in the positive sense (what is to happen) would bring similar benefits.

1.1.2 Security Requirements & Context

System context can have a profound effect on both security goals and security requirements.

As said earlier, in this thesis the word system represents more than the software. We include the

environment the software runs within: the people who will use, maintain, and depend on the

system; the physical environment the system is to exist within; the operating environment the

software runs within; and any systems, computer-based and otherwise, already in place.

Security requirements can vary, depending on the context. To illustrate, consider some software

intended for use by an executive on his or her desktop computer. The software may or may not

have any intrinsic need for security; a spreadsheet program would be a good example. Even

though the spreadsheet program may have no intrinsic security goals associated with it, the

information the executive manipulates may be confidential, creating a maintain confidentiality

 1.2. Criterion Two – Incorporation of Assumptions about Behavior

 17

security goal for the system, where the system comprises the computer, the office, the

spreadsheet program, the executive, and the confidential data. The security goal arises because

of how the spreadsheet is used, which is a property of the context within which the program

resides. When the system components {computer, office, spreadsheet program, executive} are

considered alone, no confidentiality security goal arises. The goal arises only when

{confidential data} is added.

Continuing the example, one might consider satisfying the confidentiality goal by adding a

security requirement that the system architecture include a locking office door, something

completely divorced from the software. Alternatively, one might require that the spreadsheet

program should satisfy the goal, perhaps by addition of authentication and encryption. However,

these solutions would be inadequate if the executive is in an office that is not soundproofed, and

either a) the executive uses a program that reads the information aloud, permitting an attacker to

listen without being seen, or b) if the attacker can hear and decode the keystrokes typed on the

executive’s keyboard (Zhuang, Zhou, & Tygar, 2005). The example shows that properties of the

system context that are frequently not considered can have a profound effect on the security of

the system.

1.2 Criterion Two – Incorporation of Assumptions about Behavior

When considering system behavior, the requirements engineer must determine which parts of

the world are part of the problem, and therefore to be included in the analysis. An extreme view

is that every atom in the universe is part of every problem, and therefore an analysis must

consider everything made of atoms. As this is clearly impractical, the analyst must choose a

subset of domains (real-world elements) that s/he considers pertinent (Jackson, 1995, 2001). In

so choosing, the analyst defines the system context; it consists of those domains having

properties considered relevant to the problem.

When considering security, one factor influencing an analyst’s choice about whether or not a

domain is relevant is the analyst’s set of trust assumptions (Viega, Kohno, & Potter, 2001;

Viega & McGraw, 2002). Trust assumptions are explicit or implicit choices to trust a domain

Chapter 1. Introduction

18

will behave as expected. These assumptions can have a significant impact on the security of a

system. For example, most analysts implicitly assume that the compiler is not a security risk,

and it would never occur to them to include the compiler in the security analysis. In his 1983

Turing award acceptance lecture, Ken Thompson (1984) demonstrated that this assumption

might not be justified by showing how a compiler could be a Trojan horse, introducing

trapdoors into applications. Viega et al. (2001) claim that “application providers often assume

that their code will execute in a non-hostile environment”, and then show how this assumption

leads to security breaches. Their example shows ‘secrets’ hidden in code, where the secrets

easily can be exposed through examination of the executable file. The Thompson and Viega

examples illustrate how the requirements engineer’s implicit trust of some domains in the

environment can introduce unknown amounts of risk into the system. Viega et al. went as far as

to say that “without recognizing all the entities and their trust relationships in a software system

during the requirements phase of a project, that project is doomed from the start.” (2001)

The voice-reading spreadsheet program example in section 1.1.2 further illustrates the point.

The analyst easily could tacitly, and erroneously, consider that the spreadsheet program did not

present a security risk, assuming that the office did not leak information, by not considering its

use in an office without soundproofed walls. Like context, trust assumptions can have a

significant impact on security requirements.

1.3 Criterion Three – Satisfaction of Security Requirements

If one goes to the trouble to produce security requirements for a system, it is reasonable to

ask whether the system can satisfy the requirements. The more rigorous the process used to

establish satisfaction, the more confidence one can have that the system will be secure. The

strongest process is a proof. A weaker alternative to a proof is an argument. A high-quality

argument engenders confidence that the requirements will be satisfied. The weaker the

argument, the more faith one must have that the result will, in the end, be acceptable.

No analysis of security requirement satisfaction can include every possible domain that could

be a part of the system. Every proof or argument will include trust assumptions, at minimum

 1.4. Contributions

 19

that the domains not considered will do no harm, and establishment of satisfaction depends

upon the validity of these trust assumptions. Rigorous proofs of validity of trust assumptions are

hard to come by, because malice and accident must be taken into account. Instead of proving

that a trust assumption is valid, one instead produces arguments that the trust assumption should

be considered valid. The argument must be sufficiently convincing, using properties of the

system and domains as evidence.

Trust assumption validity arguments are, in effect, sub-arguments of the proof or argument

that security requirements are satisfied, and their quality directly affects the validity of the

containing argument. The sub-arguments should be an explicit part of establishing satisfaction

of security requirements.

1.4 Contributions

As indicated above, this thesis presents three novel contributions aimed at assisting a

requirements engineer with developing adequate security requirements:

1. A security requirements framework, incorporating system context, and providing a practical

definition of security requirements that have clear yes/no satisfaction criteria. The

framework also provides a scaffold for the next two contributions.

2. Further elaboration of trust assumptions, concentrating on their role in security requirements

satisfaction arguments.

3. The use of formal and informal structured arguments to validate that a system can satisfy its

security requirements.

1.5 Novelty of the Contributions

The three contributions build upon existing work. The discussion of the meaning of system

on page 14 showed that context is important in requirements engineering. Others assert that

security requirements analysis must be placed in a system context, or the analysis will not be

complete; see, for example, (Devanbu & Stubblebine, 2000) and (Firesmith, 2003a). Our

contribution is a systematic incorporation of context into a framework for security requirements

Chapter 1. Introduction

20

engineering, and then using the context to discover trust assumptions and to develop the

satisfaction arguments.

Trust assumptions are mentioned by name in Viega in (Viega, Kohno et al., 2001; Viega &

McGraw, 2002), and are alluded to as simple assumptions in other work (e.g., (Firesmith,

2003a; van Lamsweerde, 2004)). Our contribution is making explicit their role both in

determining the size of the context and in security requirement satisfaction arguments.

Satisfaction arguments have appeared in the literature in several guises. For example,

correctness arguments appear in (Jackson, 2001) and (Hall, Rapanotti, & Jackson, 2005),

satisfaction arguments in (Attwood, Kelly, & McDermid, 2004), (Hammond, Rawlings, & Hall,

2001), and (Hull, Jackson, & Dick, 2002: pgs 143-158), adequacy arguments in (Jackson,

2006), and safety arguments in (Kelly, 1999). Our contribution is the extension of these

arguments for security, proposing two additional factors that should be considered: trust

assumptions within a system context. We further propose that representing security satisfaction

arguments by a combination of formal and structured informal arguments leads to significant

benefits. The formal arguments provide the yes/no criteria, assuring that the requirements are

satisfied, assuming that the trust assumptions are valid. The informal arguments, using a

jurisprudence-like style of argumentation, show why the trust assumptions are acceptable. The

informal arguments are not proofs, but instead are sufficiently convincing in their context.

1.6 Research Methodology

Our research was piloted by the three classic steps: a) identify gaps through examination of

the literature, b) propose ways to fill (some of) the gaps, then c) validate that the gaps are indeed

filled. The first two steps presented no particular difficulty beyond the inherent intellectual

challenge. The third step was more problematic.

Three options to validate the contributions presented in this thesis were considered:

• Testing the contributions by replaying an existing case study.

• Testing the contributions using constructed examples.

 1.6. Research Methodology

 21

• Testing the contributions in a live industrial project.

We discuss each of these options in turn below.

1.6.1 Option 1 – Validation by Replaying an Existing Case Study

This form of validation would use as its baseline an existing published case study. The

project would be run again using the contributions presented in this thesis, and the results

compared. A case study to be used in this fashion must meet the following preconditions:

1. The project must have identified security as a success factor.

2. The documentation in the case study for the requirements phase must be at a level sufficient

to understand the goals of the project.

3. There must be sufficient information in the case study to permit construction of the system

context, to permit use of the contributions of this thesis, and to compare the results.

Despite extensive searches of both the literature and information on the web, we were unable to

find a case study that met these requirements. We hypothesize that such case studies are not

available because commercial entities are very unwilling to advertise their security failures, and

because considering security before system design (e.g., during requirements analysis) is new.

1.6.2 Option 2 – Validation using Constructed Examples

This form of validation requires one to construct a problem where security plays a role, then

work through the example problem to show how the contributions presented in this thesis help

identify security requirements. The only precondition is that the example shows how the

contributions presented in this thesis are used. We use this validation method in this thesis.

Validating using constructed examples has the following strengths:

1. The examples can be constructed to best illustrate the contributions.

2. The contributions can be described in a tutorial fashion.

3. The examples can be perturbed, if needed, to show alternative results.

Using a constructed example has one significant disadvantage: the way the example is

constructed may mask problems with the contributions that real examples would make evident.

Chapter 1. Introduction

22

To help minimize this risk and to provide us with a sanity check on our work, we have

published the contributions in several peer-reviewed venues (see the next section). The

criticisms received have helped enormously with filling in gaps in the contributions.

1.6.3 Option 3 – Validation by Testing on a Live Project

To validate by testing on a live project, one would in effect do the security requirements

work twice, once in the way that the project had intended, and once using the contributions

presented in this thesis. The results would then be compared. Successful use of this validation

method has several preconditions:

1. The project stakeholders must have identified security as a success factor for the project.

2. The project schedule (start & finish) must be compatible with the PhD research timeline.

3. The complexity of the project must be compatible with the resources available.

4. The project must be willing to dedicate resources sufficient to use the framework presented

in Chapter 5 and, in particular, the satisfaction arguments presented in Chapter 6.

No industrial partner available to us had a project that met all the above conditions. In fact, no

project met conditions 2 and 4.

Given that no project met all the conditions, we decided to try to validate the contributions in

a project that met some of the conditions, using a ‘trial’ approach as opposed to an experiment

that compared the two outcomes. We assumed a consultancy-like role in one project that met

conditions 1 and 3, and we were able to show that the contributions could be of value during the

design phase; these results are presented in Chapter 7. Unfortunately, the project's duration

prevented us from following the project to its completion, so we do not know what use the

project made of the information we developed.

1.7 Publication History of Contributions

Much of the material in this thesis has been published, primarily in international venues, with

increasing levels of maturity. The publications were peer-reviewed, with the exception of three

technical reports.

 1.8. Structure of this Thesis

 23

Trust assumptions, (Chapter 4) are described in (Haley, Laney, Moffett, & Nuseibeh, 2003,

2004a, b, 2006a), and used in (Haley, Moffett, Laney, & Nuseibeh, 2005; Haley, Laney,

Moffett, & Nuseibeh, 2006b).

The security requirements framework (Chapter 5) was first described in (Moffett &

Nuseibeh, 2003) (a technical report), substantially elaborated in (Moffett, Haley, & Nuseibeh,

2004) (a technical report), and further refined in (Haley, Moffett, Laney, & Nuseibeh, 2006).

Synopses of the ideas in Chapter 5 have appeared in (Haley, Laney et al., 2003, 2004a, b; Haley,

Laney, & Nuseibeh, 2004c; Haley, Moffett et al., 2005; Haley, Laney et al., 2006a). Threat

descriptions were introduced in (Haley, Laney et al., 2004c).

Our work on security satisfaction arguments (Chapter 6) was first published in (Haley,

Laney, & Nuseibeh, 2005) (a technical report), and substantially modified and elaborated in

(Haley, Moffett et al., 2005; Haley, Laney et al., 2006b).

We note that although the technical report (Moffett, Haley et al., 2004) was not peer

reviewed, it has had an impact, as evidenced by being cited by (at least) He (He, 2005), Mead,

Hough et al. (2005), and Redwine (2006).

1.8 Structure of this Thesis

This thesis comprises eight chapters. The first is this introduction. Chapter 2 provides

background information relied upon in the following chapters. Chapter 3 presents related work,

expanding upon the discussion in this chapter. Next, the three contributions are discussed,

beginning in Chapter 4 with trust assumptions. Chapter 5 introduces our security requirements

framework, describing the framework using a constructed example. A major part of the

framework, our security satisfaction arguments, is presented in Chapter 6. Chapter 7 provides

the industrial example described earlier, and Chapter 8 finishes with discussion, future work,

and concluding remarks.

Chapter 1. Introduction

24

 25

Chapter 2. Background

Problem frames (Jackson, 2001) are used in this thesis to describe system context for security

requirements, and to describe phenomena used in behavior specifications. This section presents

some background information on problem frames, along with a discussion of requirements and

specifications in a problem frames context.

In addition, this chapter justifies the definitions of some terms used in this thesis, and

provides some background material on parallel elaboration of requirements and architecture.

2.1 Problem Frames

Problem frames are used during problem analysis, providing mechanisms for describing the

domains in a problem. When using problem frames, the analyst decomposes larger problems

into a collection of smaller ones. These subproblems are later recomposed, providing the

solution for the original problem.

In a problem frames universe, a requirements engineer describes problems by describing the

interaction of domains that exist in the world. The problem frames notation captures domains in

a problem along with the interconnections between them. For example, assume that the

requirements elicitation process for a box that protects documents from fire produces the

requirement open the fireproof box when a door-open button is pushed. The elicitation process

tells us that the stakeholders want a system consisting of (at least) a box, a door, and a button.

Chapter 2. Background

26

Figure 2-1 illustrates one set of domains that could satisfy the requirement: a basic automatic

door system with three domains, two of which are given and one of which is to be designed. The

first given domain, Door Mechanism, is the box’s door mechanism domain, capable of opening

and shutting the box’s door. The second given domain, Person + Button, is the one requesting

that the door be opened; for convenience this domain includes both the button to be pushed and

the human pushing the button. The third domain, Control, is a designed domain, indicated by

the two vertical lines in the box. It is the machine, the domain that will bridge the gap between

the other two domains in order to fulfill the requirement that the door open when the button is

pushed. The oval presents the requirement that the machine is to satisfy.

In problem frames, every domain has interfaces, which are defined by the phenomena visible

to other domains. Phenomena (e.g., events and signals) are visible: they can be observed. The

problem frames notation shows the phenomena shared between two domains on the line

between the domains by labeling the line (the ‘a’ and ‘b’ in Figure 2-1). The label refers to a set

of phenomena on the interface. Phenomena are controlled by one of the domains on the

interface; the controlling domain is indicated by an abbreviation in front of an exclamation

mark. For example, in Figure 2-1, the interface between the Person + Button domain and the

Control Machine is labeled ‘b’. There are two phenomena on the interface, ButtonDown and

ButtonUp, both controlled by the Person + Button domain as indicated by ‘PB!’. The Control

Machine controls the Boolean phenomena MotorOpen and MotorClose (turn on and off the

Figure 2-1 – A basic Problem Frames diagram

 2.1. Problem Frames

 27

motor) on the interface between the machine and the Door Mechanism. The Door Mechanism

controls the phenomena DoorIsOpen and DoorIsClosed.

One can think of domains as a set or as a class (a type). When a set, instances of the domain

in the running system are members of the set, but might not all be the same type. This way of

thinking is attractive in that it permits an object to be a member of multiple sets, which clearly

happens in reality (a ‘person’ can be both a ‘user’ and an ‘administrator’). Unfortunately,

sometimes we want to talk about a class of objects (objects with particular attributes &

properties), not one of a set (e.g., a particular authenticated user). To solve this problem, one can

think of a domain as a class, where all the attributes & properties of interest are defined by the

class. When the system is realized (instantiated), objects that are instances of the domain classes

interact with each other, and these instances can be named. The downside of choosing the class

point of view is that objects can be instances of more than one class, creating something like

multiple inheritance. In this thesis, we use both schemes, as appropriate to the situation.

Requirements are optative. They describe desired behavior (phenomena: inputs, outputs, and

states visible at their interfaces) instead of existing behavior (Jackson, 2001). Descriptions of the

behavior of designed domains are both optative and indicative. A description is optative in the

description where the domain is being designed, but indicative when the designed domain is

placed into a system. Descriptions of the behavior of given domains are indicative; they

describe an “objective truth” about the behavior of the domain.

2.1.1 Requirements and Specifications

According to Zave and Jackson (1997), a requirement is an optative description of what the

system is to do. Requirements describe a desired effect in terms of phenomena visible in the

world. Jackson (2001) describes a requirement as “the effects in the problem domain that […]

the machine is to guarantee.”

Again referring to Zave & Jackson (1997), specifications are about phenomena across all the

domains in a problem. The specification of an individual domain is a description of the behavior

of the domain in terms of the interplay of its phenomena, indicative and optative, visible at its

Chapter 2. Background

28

interface. The term interplay incorporates the notions of sequencing: stimulus, response, and

causality. The specification of a system is the collection of domain specifications that together

permit the fulfillment of the requirement(s).

The distinction between requirement and specification is an important one. A requirement

does not describe how a system is to be implemented, but instead describes what is desired by

the stakeholders in terms of phenomena visible at certain domains in the real world. It is the

specification that describes how, in terms of the phenomena of all the domains in the system, the

requirement is fulfilled. For example, the requirement “given a temperature input in Fahrenheit,

the system shall display that temperature in Celsius” is describing some input phenomena on

one domain (probably a keyboard) and some output phenomena of another domain: the display;

these are the requirement phenomena. The rest of the phenomena in the system exist to make

the system produce its output requirement phenomena, given its input requirement phenomena.

Correctness arguments use this correspondence between requirements and specifications. To

show that a system correctly satisfies the requirement, one must show that the interplay of

specification phenomena causes the requirements phenomena to occur at correct points. If the

phenomena are described formally, then the correctness argument can be a proof. If the

phenomena are described informally, the correctness argument is equally informal.

It is worth noting that Jackson has recently moved from correctness arguments to adequacy

arguments (2006), which are very similar to the satisfaction arguments described in this thesis.

When asked about this shift1, Jackson explained that when the “real world” is involved, it is not

possible to describe all possible behavior, especially in the face of failure, and therefore one

cannot prove correctness. One instead ensures that an adequate number of cases have been

considered, and argues why that set of cases is adequate.

1 Personal communication between the author and Michael Jackson.

 2.2. Definitions

 29

2.1.2 Indicative vs. Optative Descriptions

Indicative domain properties are normally expected to be known and constant; the same

stimulus in the same context produces the same response. This is what Jackson meant by

“objective truth” (2001). Optative domain properties are those one wants; they do not exist yet.

Unfortunately, when reasoning about security one should put aside the convenient “indicative

properties” concept and assume that all domain properties are optative, because one way an

attacker can succeed is by perturbing behavior of domains thought indicative. Consider the

pushbutton in the domain shown Figure 2-1; when the button is pushed, the circuit connected to

the button is closed. This would seem to be an indicative property. Now put some confidential

information in the box, and then consider the same button from the point of view of an attacker.

The attacker might cut the wire, connect an alternate or second button to the wire, or put a

circuit in the middle that analyzes the context of the button push and either passes it on or does

not. The property can no longer be considered objectively true. It has become optative: what one

wants to be true, or alternatively what should be true.

Security requirements are optative, describing characteristics of the system that the

requirements engineer desires to be true. The lesson learned from the above discussion is that,

unlike functional requirements, security requirements should assume that indicative domain

properties are optative, because a goal of an attacker might be to change the behavior of some

indicative phenomena. A successful attack means one of two things: that phenomena exist that

were not described in the problem, or that behavior (the specification, or interplay of

phenomena) assumed to be indicative (to be true), is not.

2.2 Definitions

Software engineering, security requirements, and security engineering have vocabularies that

share many terms. Unfortunately, the terms do not always have the same meanings. To help

avoid confusion, this section presents how some of the terms are used in this thesis.

Chapter 2. Background

30

2.2.1 Security and Safety

As said in the introduction, this thesis is about security requirements. One question that

frequently arises is whether we consider safety when considering security. There is a very close

relationship between security and safety requirements. Both deal with system failures that lead

to harm. Both deal with analysis of the context to look for evidence about how failures might

occur. Both add requirements to reduce the possibility of, or to mitigate the effects of, these

failures. We did not wish to consider safety in this thesis, and therefore we needed to find a way

to define, or scope, our efforts so that they did not include safety, but equally so that safety

would fit in a structure that also includes our contributions. In other words, we needed to find

compatible definitions of safety and security.

Some authors say the difference between security and safety is intention (e.g., (Firesmith,

2003a; Jonsson, 1998; Leveson, 1986)), and we use this definition. Safety concerns harm caused

by accident, while security concerns harm caused intentionally by an attacker. Failures of

security can easily lead to safety concerns; consider placing a bomb on an airliner. Equally,

failures of safety can lead to security concerns; consider an accident involving a truck carrying

unencrypted backup tapes.

The use of intention as a discriminator is not universally agreed. For example, (Avizienis,

Laprie, Randell, & Landwehr, 2004) defines security as “the absence of unauthorized access to,

or handling of, system state.” The paper discusses the role of intention, but does not give it any

particular emphasis. This differs from one of its predecessors, which recognizes that security is

dominated by intentionally provoked faults (Laprie, 1992). The SafSec methodology (Lautieri,

Cooper, & Jackson, 2005) combines safety and security, without introducing intention. The

ITSEC defines security as “the combination of confidentiality, integrity and availability [of

information]” (Senior Officials Group - Information Systems Security, 1991: pg 115), a much

more restricted view of security that does not include intention.

There are several definitions for safety in the standards, and these definitions do not help

disambiguate the terms. For example, Avizienis et al. define safety as the “absence of

 2.2. Definitions

 31

catastrophic consequences on the user(s) and the environment” (Avizienis, Laprie et al., 2004),

a definition that could easily include security-related items such as integrity. IEC 61508-4

defines safety as “freedom from unacceptable risk” (CENELEC, 2002: pg 11), a definition that

certainly includes security. Both of these definitions are made clearer by including intention as a

differentiator.

Although we recognize that using intention as the differentiator between safety and security

is sometimes uncomfortable, we feel that the distinction being made between intention and

accident is helpful. It assists with setting bounds on both the context and the mitigations.

Consider the possibility of failure of some component in an aircraft, potentially causing the

aircraft to crash. Under our definition, this is a safety problem and therefore not considered in

our analysis. However, if the component could be provoked to fail, then we have a security

problem: preventing the (intentional) actions that could provoke the failure.

2.2.2 Asset, Threat & Vulnerability

These three words are used throughout the security literature, but not always with the same

meaning. In this thesis, we use the definitions used by Chivers & Fletcher in (2005) (quoted

here):

• Asset: a resource of value to an organization (e.g., hardware, software, data, people).

• Threat: a potential harm that could occur to an asset.

• Vulnerability: a weakness in a system that allows an attack to realize a threat.

These definitions are consistent with those found in (NIST, 1995) and (Mead, Hough et al.,

2005).

These definitions are rather different from some proposed elsewhere. One definition has

threats confounded with attacks and/or attackers. For example, Firesmith in (2004) defines a

threat as “a general condition, situation, or state (typically corresponding to the motivation of

potential attackers) that may result in one or more related attacks.” ISO 15408, an information

security standard, does not define the word ‘threat’, but it does characterize a threat by “A threat

Chapter 2. Background

32

shall be described in terms of an identified threat agent, the attack, and the asset that is the

subject of the attack.” (ISO/IEC, 1999a: pg 45).

For another definition, consider the definition in (Breu & Innerhofer–Oberperfler, 2005): “A

Threat is defined as any event that can result in the violation of a Security Requirement.” Here,

threats are defined in terms of security requirements, as opposed to defining security

requirements in terms of threats. We do not use this definition because it leaves unsaid what is

used to determine security requirements.

The definitions we use have the advantage of clearly separating the concepts of asset, threat,

attack, and vulnerability. One need not bring attackers and vulnerabilities into the discussion

when considering what harm can follow some abuse of an asset. One can, but need not,

speculate about the motivations of an attacker when considering whether a particular

vulnerability would permit realization of some threat.

The definitions are discussed further in Chapter 5.

2.2.3 Validation & Verification

As said in Chapter 1, this thesis is about obtaining adequate security requirements. Adequate

requirements are testable, in that sufficient criteria are provided to establish that a system

satisfies the requirements (e.g., the “fit criteria” in (Robertson & Robertson, 1999)).

Establishing satisfaction of requirements is usually considered part of validation and

verification, and therefore one prerequisite to accomplishing our goal is agreement on the

definitions of the two terms; what validation and verification are. The purpose of this section is

to present and justify the definitions we use for the terms.

It is commonly held in the requirements engineering community that one should be able to

determine whether a set of requirements accurately represent the goals/desires of the

stakeholders, and to determine whether a delivered system satisfies the requirements. For

example, one can determine whether the requirement When the user enters a temperature in

Fahrenheit, the system shall display that temperature in Celsius is correct by asking the

 2.2. Definitions

 33

stakeholders if this is indeed what they want the system to do. The constructed system is

checked against the requirement by entering Fahrenheit values and seeing if the correct Celsius

values are displayed. This process is an example of validation and verification, but it does not

make clear which step is validation and which step is verification.

Unfortunately, the literature does not provide a clear definition of the terms validation and

verification. Boehm in (1984) informally defines validation as asking “are we building the right

product”, and verification as asking “are we building the product right”, and Easterbrook in

(1996) expands on these definitions, saying that “validation is concerned with checking that the

system will meet the customer's actual needs, while verification is concerned with whether the

system is well engineered”. The IEEE Standard for Software Verification and Validation (IEEE,

1998) defines the words in a way that permits them to be used almost interchangeably, but the

notes on the definitions give more precision, saying that validation is “the process of examining

a product to determine conformity with user needs” and verification is “the process of

examining the result of a given activity to determine conformity with the stated requirement for

that activity” (pg 71). Caughlin, writing about simulation, defines the terms similarly to these

notes (2000). Pemberton & Sommerville, in a paper about testing, use (and justify) similar

definitions (1997).

Another example of the use the terms validation and verification is found in (Soudah, Pilch,

Doebling, & Nitta, 2004). Quoting the relevant paragraph: “V&V is the multi-disciplinary

process of demonstrating credibility in simulation results. Credibility is built by collecting

evidence that a) the numerical model is being solved correctly and b) the simulation model

adequately represents the appropriate physics. The former activity is called Verification and

requires intimate knowledge of the mathematical model representing the physics, the numerical

approximation derived from that model, software quality engineering (SQE) practices, and

numerical error estimation methods. The latter, termed Validation is accomplished by

comparing simulation output with experimental data and quantifying the uncertainties in both.

Broad knowledge of modeling and experimentation, augmented with a deep understanding of

statistical methods, are necessary for Validation.” Here, verification is the process of ensuring

Chapter 2. Background

34

that the software correctly implements the mathematical model of the world, and validation is

the process of ensuring that the model accurately represents reality. In this definition, the model

is clearly an intermediate artifact between the goals (and possibly requirements) and the

software. One validates that the model satisfies the stakeholders’ goal: that the model represent

reality. One verifies that the model is satisfied by the software: that the software accurately

implements the model. This usage is consistent with the Easterbrook quote in the above

paragraph.

Our definition of validation and verification is compatible with the examples in the above

paragraphs. We first assume the existence of a hierarchy of activities; requirements are inferior

to goals but superior to delivered software. Given this assumption, we define validation and

verification by determining which direction in the hierarchy one is looking. We define

verification as determining whether an activity in question is satisfied by the result of a

hierarchically inferior activity. We define validation as determining whether an activity in

question satisfies a hierarchically superior activity.

To clarify, assume that some project has stakeholders (S) and a three-level hierarchy of

constructed artifacts. Moving from outermost to innermost, level 1 is documented goals (G),

level 2 is documented requirements (R), and level 3 is the delivered system (D). Verification is

done by looking down the artifacts hierarchy: for example by checking whether R is satisfied by

D. Validation is done by looking up the artifacts hierarchy: for example by checking whether R

satisfies G. Our definitions are consistent with the above discussion, and have the added

advantage (for us) of fitting into a hierarchy within which artifacts are constructed.

Note that because of the imprecision in the way artifacts are described, one must be careful

about assuming that validation and verification are transitive. Verifying that (S is satisfied by G)

and that (G is satisfied by R) does not necessarily verify that (S is satisfied by R). For example,

assume that the stakeholders want a system to support a manufacturing process that uses gold

for some reason. Gold is determined to be an asset, and the security goal Protect gold from

theft is added to the system. The goal does not include information about why there is gold in

the system. Without that information, the goal could be operationalized by the requirement Gold

 2.2. Definitions

 35

shall be buried in very deep holes. This requirement satisfies the goal, and the goal

satisfies the stakeholder. However, the requirement would almost certainly not satisfy the

stakeholder, because the requirement does not satisfy the business goal.

2.2.4 Functional and Non-Functional Requirements

Requirements are often separated into two categories: functional requirements that describe

what a system is to do, and non-functional requirements that describe some characteristic or

quality the system is to have2 ((Chung, Nixon et al., 2000) and many others). Functional

requirements describe what a system does: they describe visible effects in the world that the

system lives in. Jackson describes requirements as the interplay of phenomena that one wishes

to be visible at interfaces of a particular set of domains (real world objects) implicated in a

system (2001). One domain, the machine, orchestrates the communication between domains so

that the interplay of phenomena is exhibited. The requirements are validated by checking with

the stakeholders that the interplay produces what they wish. The requirements are verified by

checking that the interplay takes place as specified.

Non-functional requirements ((Chung, Nixon et al., 2000; van Lamsweerde, 2001) & many

others), cover such areas as performance, stability, ease-of-use, and (traditionally) security.

These requirements, also called quality requirements (e.g., (Firesmith, 2003b)), generally do not

have clear criteria for determining if they have been satisfied; there is no clear mapping from the

requirement to effects in the world (van Lamsweerde, 2001; Mylopoulos, Chung et al., 1992).

Validation and verification are problematic for quality requirements because yes/no validation

and verification measurement criteria are hard to come by. Because of this difficulty, one must

decide if a requirement has been satisficed (Mylopoulos, Chung et al., 1992), or satisfied well

enough, which opens the question of what well enough means. For example, it may be easy to

produce a requirement that states clearly what the stakeholders desire (for validation) but is

unclear about what the system is to do (for verification), or vice versa. Consider the

requirement/goal the system shall be easy to use. This goal is easy to validate; the users can

2 NFR’s can also be requirements on the development process, but we leave that aside in this discussion.

Chapter 2. Background

36

quickly say “Yes, I want that.” However, the goal is very difficult to verify, because it says

nothing about what ease of use is in the context of the system, or how one can know whether the

system has achieved it. The goal could be changed to be the system shall conform to the

Common User Access standards. It is much easier to verify that this goal is satisfied by the

system, but most users would have difficulty confirming that a system conforming to that

requirement would in fact be easy to use. Somehow, an original validatable goal must be

translated into visible and measurable behavior in the context of the system. Only then can one

verify that the system indeed has the required behavior.

2.3 Parallel Elaboration of Requirements & Architecture

The Twin Peaks model (Nuseibeh, 2001a, b) shows that the elaboration of requirements and

architecture should proceed in parallel, each influencing the other. The model proposes a partial

development methodology wherein requirements and architecture (where architecture includes

implementation) are simultaneously elaborated and verified against each other, bound together

by the specification process. The model extends the spiral method (Boehm, 1988) by making

elaboration of requirements an explicit part of the spiral. The benefits derived from the model

include earlier understanding of the problem(s) being solved because architectural constraints

are discovered earlier, rapid turn-around, inherent recognition and incorporation of project

management concerns such as IKIWISI (I’ll Know It When I See It), easier incorporation of

reusable components such as COTS (Commercial Off-The-Shelf) products, and rapid change in

requirements and technology (Boehm, 2000).

 2.3. Parallel Elaboration of Requirements & Architecture

 37

Figure 1 (originally in (Nuseibeh, 2001a), copied from (Haley & Nuseibeh, 2003)) illustrates

how a project might move from idea to implementation while using Twin Peaks. The peaks

represent the requirements and architecture artifacts. The further one moves down a peak, the

more detail is present and the more complete the artifact is. The spiral line represents the

specification process, which is itself not an artifact but the simultaneous application of various

and distinct methods to elaborate requirements and implementation.

The need for iteration between requirements and architecture is doubly true in the context of

security requirements, because as was shown in the spreadsheet example in Chapter 1, security

is a systems-level problem. One cannot accurately determine the security requirements without

the context of the system, and the architecture of the system is part of its context. To illustrate

the idea, consider a trivial functional requirement business proposals shall be stored

electronically using a format defined by the customer. In addition, assume the existence of the

general security goal business proposals are to be treated as company-confidential information.

Without knowing the domains involved in the problem, how does one know how to keep the

information confidential? One can postulate the existence of computers used to write and store

the proposals, but cannot go much further. The designer could choose to put the machines in a

Figure 2-2 – Twin Peaks

Chapter 2. Background

38

locked room, in which case the room key becomes a phenomenon in the problem and the

security requirements must describe the constraints on obtaining and using a key. Alternatively,

the designer might specify a client/server architecture in which the client machines are publicly

accessible. In this case, the client machine domain can be physically accessed by anyone and the

proposals are potentially visible where the client and server domains connect (the network). The

security requirements must describe constraints on who can use the client machine and on who

can see the information where the domains connect.

When the requirements engineer attempts to build a correctness/satisfaction/adequacy

argument for some requirement, it could be that an acceptable argument cannot be constructed

because there is not enough information available from the context. The requirements engineer

would then request the designers to intervene, making (or applying already made) design

decisions appropriate for the level of information available, changing the context by changing

and adding phenomena and possibly domains. The requirements engineer starts again with the

new context, attempting to construct acceptable arguments. This iteration continues until an

acceptable argument is made.

It is highly likely that applying a security requirement to a problem will alter the problem,

possibly by changing phenomena, adding or removing domains in the existing problem, or both.

For example, the specification to fulfill a security requirement information shared between the

client and server domain must not be accessible to anyone must be evaluated in terms of visible

phenomena. The designer must assure either that information shared between the domains is not

visible outside the problem or that seeing what passes between the domains does not reveal the

information. Either way, the physical properties of the connection need to be described.

 39

Chapter 3. Related Work

Hindsight permits an examination of the literature using three lenses derived from the criteria

listed in the Sections 1.1 – 1.3 of Chapter 1 of this thesis. Our first lens is the second criterion,

assumptions about behavior: examining how context and assumptions are made explicit3. Our

second lens is the first criterion, clarity: how security requirements are defined and their

meanings understood. Our last lens is the third criterion, satisfaction: using design rationale and

argument capture for security requirements verification.

3.1 Context & Assumptions

This section examines the literature using the first lens, asking how the system context and

assumptions are made explicit.

For a security breach to occur, an attacker must make use of some entry point into a system

to get to the assets. Given that the attacker is in the real world, the entry point must also be a

real-world domain in the system (in the large, not just software). If no entry points exist that an

attacker can use, the system cannot be exploited. (Nor, probably, can it be used, but that is

another problem).

It is axiomatic that when an analyst constructs a context for a system, assumptions will be

made about the behavior of domains in that context. Being a bit silly but making the point, even

though the analyst believes that he or she is considering all the worst-case scenarios where all

defenses are inexplicably breached, the analyst almost certainly (and implicitly) assumes that

the computer running the software is not hostile. One must have a special mind set, such as the

one described in Programming Satan’s Computer (Anderson & Needham, 1995), before

3 The second criterion is treated first to avoid some forward references.

Chapter 3. Related Work

40

everything would be assumed to be under the control of an enemy. On the other hand, the

analyst might make implicit assumptions that are more problematic, such as “employees are

always honest”. In addition to exploring context, this section examines the literature by asking

whether a representation for context should facilitate explicit capture of trust assumptions;

assumptions the analyst makes about trusting the stated behavior of domains.

The section begins with a detailed look at context and assumptions in i* and its derivatives,

then moves on to KAOS and SeDAn. It ends with a brief examination of other security

requirements work.

3.1.1 The i* Framework

The i* framework (Yu, 1997; Yu & Liu, 2001) takes an ‘actor, intention, goal’ approach,

where security and trust relationships within the model are modeled as “softgoals”: goals that

have no quantitative measure for satisfaction. The i* framework incorporates the NFR

framework, including related security work (Chung, 1993; Chung, Nixon et al., 2000). Liu et al.

extended the framework to better support security and privacy by modeling the attacker as a

malicious stakeholder (Liu, Yu, & Mylopoulos, 2003). Countermeasures, which are themselves

(soft)goals, are added to thwart the attacker.

The Liu et al. work focuses on the attacker as the primary point of analysis (Liu, Yu et al.,

2003). One finds vulnerabilities by asking what an attacker might wish to gain while playing

some role, and then looking for ways that the attacker might achieve the wish. As i* is focused

on the actor, it is difficult to explore side effects of an actor’s actions in the real world. For

example, one cannot easily model implicit connections between actors formed because of an

actor’s actions, such as leaving one’s password on a post-it note or the effects of a laptop being

stolen.

i* can be used to demonstrate the need for certain trust assumptions, specifically those that

restrict which agents are permitted to play particular roles, and those that exclude the possibility

of an agent exhibiting undesired behavior. There is, however, no convenient way to insert these

trust assumptions into the model (beyond text annotations) without expanding the scope of the

 3.1. Context & Assumptions

 41

analysis. For example, consider one of the countermeasures proposed in (Liu, Yu et al., 2003):

“User Authentication Mechanism”. In the diagram, the countermeasure is a leaf task. The actors

and mechanisms that support, provide, and rescind authentication credentials are not mentioned,

but are clearly being trusted by the analyst to be correct. To make these trust assumptions

explicit in the model, one must add the actors who administer authentication, a process that is by

necessity highly recursive.

The Tropos project uses the i* framework, adding wider lifecycle coverage. Tropos focuses

on connecting agent-oriented architecture and development with i*, extending the i* model to

describe the details of the agents’ behaviors (Castro, Kolp, & Mylopoulos, 2001). A formal

specification language was added in (Fuxman, Pistore, Mylopoulos, & Traverso, 2001).

Security, represented as constraints on the interactions between two agents, was later added

(Gani, Manson, Giorgini, & Mouratidis, 2003; Mouratidis, Giorgini, & Manson, 2003),

extending the specification language to express these constraints and agent interaction

dependencies. Architectural styles beyond agent-orientation are also discussed (Mouratidis,

Giorgini et al., 2003). Trust and trust delegation were added (Giorgini, Massacci, Mylopoulos,

& Zannone, 2004; Giorgini, Massacci, Mylopoulos, & Zannone, 2005), along with appropriate

extensions to the specification language.

Although Tropos has significantly enhanced i*’s ability to represent security constraints and

dependencies, and in particular confidentiality dependencies, it does not extend i*’s ability to

represent trust assumptions made by the analyst about the real world. The authorization example

described above also applies to Tropos; one finds authorization constraints and sub-goals in an

early Tropos security paper (Mouratidis, Giorgini et al., 2003), but one cannot explicitly

indicate that administration of the authorization information is trusted, beyond extending the

goal structure to include analysis of credential administration. One reasonable position is that

some trust assumptions are implicit in the definitions and conditions of the formal modeling

language (as can be said for KAOS below).

Other work has extended i* in related directions. Gans et al. add distrust and inter-agent

communication (“speech acts”) (Gans, Jarke, Kethers et al., 2001). Actors in the system decide

Chapter 3. Related Work

42

dynamically to trust or to distrust each other. Yu and Cysneiros have looked at privacy (2002),

exploring how privacy requirements fit into an i* model. Both papers are concerned with

analyzing trust relations between actors/agents in the running system, as opposed to capturing

the requirements engineer’s assumptions.

Because i* and its derivatives do not model the real-world components of the system as it

will eventually be built, certain classes of trust assumptions are difficult to make explicit. The

best examples relate to unexpected connections between domains, such as information on paper

passing through a mailroom, people hearing through walls, and security of backup media. Other

examples can be found when looking at interactions between components on a system that are

not i* actors.

The conclusion one reaches is that although i* works well for early requirements analysis and

for actor/agent-based system analysis, it does not sufficiently represent general context and trust

assumptions for security requirements analysis.

3.1.2 KAOS

KAOS (Dardenne, van Lamsweerde, & Fickas, 1993; van Lamsweerde, 2001), a goal-

oriented requirements engineering method, uses obstacles to analyze security and safety (van

Lamsweerde & Letier, 2000). An obstacle to some goal “is a condition whose satisfaction may

prevent the goal from being achieved” (van Lamsweerde, 2004). A recent addition is anti-goals,

a refinement of obstacles, to discover and close vulnerabilities (van Lamsweerde, Brohez, De

Landtsheer, & Janssens, 2003; van Lamsweerde, 2004). One begins with a goal model for some

system; the goal model includes a domain model expressed using temporal logic. Security goals

for objects in the domain are enumerated using a catalog of general goals (e.g., confidentiality,

integrity, etc.). One inverts these goals to express the goals of some attacker (anti-goals), and

then looks for vulnerabilities in the original domain model that permit the anti-goals to be

realized.

As in i*, there are ways in KAOS to find and express some kinds of trust assumptions. One

could argue that some expectations, which are terminal goals under the responsibility of non-

 3.1. Context & Assumptions

 43

software agents ((van Lamsweerde, 2004), referred to as assumptions in (van Lamsweerde,

2001)), are expressions of trust assumptions, as the analyst is choosing to stop analysis at that

point. Domain-specific axioms might also fall into the category of trust assumptions. For

example, the authorized predicate described in (van Lamsweerde, 2004) is clearly depending

upon knowing if an agent is an owner, a proxy, or a manager, but there is no expression of how

it is known or managed, or what domain behavior permits it to be known.

Using KAOS, one expresses security goals in terms of the vulnerability to be addressed. As

noted by van Lamsweerde, not all vulnerabilities must be eliminated, but instead may be

mitigated or ignored (van Lamsweerde, 2004). The choice varies with the context of the

vulnerability – the level of harm being risked and the probability that the harm will occur. One

creates goals that express the choices made for a particular vulnerability. Focusing on the

vulnerability as opposed to the asset to be protected loses information explaining the

provenance of the goal (the context of the vulnerability). Goal refinement further distances the

goal from its source. This distance creates difficulty when considering whether the cost of

satisfying a security goal in a particular context is justified by the risk presented by the

vulnerability in that context.

KAOS does not express context in terms of real-world domains, but instead expresses it in

terms of goals, objects related to the goals, and actions needed to achieve the goals. Objects are

not necessarily physical domains. Behavior is expressed in terms of logical pre- and post-

conditions on objects. The actual recognized and emitted stimuli (phenomena) that permit the

post-conditions to be satisfied are not recorded. As such, KAOS is a level removed from the real

world. As the attacker is firmly placed in the real world, there is a mismatch between what the

attacker manipulates and what KAOS models.

3.1.3 SeDAn

The SeDAn (Security Design Analysis) method (Chivers & Fletcher, 2005), developed

concurrently with (and independently of) the work described in this thesis, has many similarities

with our work, incorporating an explicit notion of context and a definition of security

Chapter 3. Related Work

44

requirements as constraints. A SeDAn context is an information flow graph, mapping the flow

of information assets from their source through a network of services running on a grid. The

definition of ‘services’ includes the users of the services. Using an attack model, one looks for

paths in the graph that attackers can exploit. Such “paths of attack” may be within a service

(e.g., internal users), where services are connected (administrative or organizational

boundaries), or where information is exposed to the external world. The goal is to show whether

a path exists from an attacker to the information asset. Constraints (security requirements) are

placed on services to block such paths.

A SeDAn context is focused on information assets and software services running on a grid,

using a UML description of the interconnection of services. The boundary of the system (it’s

‘edge’) is the user interface, and analysis is limited to vulnerabilities within this boundary. For

example, bribing a user is not considered directly, because the user is outside the system

boundary (Chivers & Fletcher, 2005: pg 878).

Using SeDAn, an asset and threat analysis is done to determine the risk (including both

likelihood and impact) that a path of attack can be utilized. One makes a table of the assets and

the security concerns that affect the assets, noting the impact of the violation of the concern.

Next, one determines which assets might be available through a given path of attack and the

likelihood that the path of attack can be utilized in the undesired way. Impact and likelihood are

combined, resulting in a quantified value for risk.

For risks considered serious enough, constraints are added that, when satisfied, will cause the

path to be sufficiently blocked. The constraints are on deployment, system topology, behavior of

a service, and external access. They act “as requirements for implementers … ” (Ibid: pg 882).

SeDAn does not contain an explicit satisfaction argument for how the constraint sufficiently

mitigates the risk, but does contain model checking to check that the system will satisfy the

constraint.

Chivers and Fletcher acknowledge that satisfying constraints can cause additional

functionality to be added and that this new functionality “may include new assets and services,

 3.1. Context & Assumptions

 45

and these in turn may have confidentiality or integrity concerns” (Chivers & Fletcher, 2005: pg

887). However, they say neither how this iteration is structured within the process, nor how

traceability back to the security concern that provoked the addition of functionality is

maintained.

3.1.4 Other Work

He and Antón (2003) concentrate on privacy, working on mechanisms to assist trusting of

privacy policies, for example on web sites. They propose a context-based access model. Context

is determined using “purpose” (why is information being accessed), “conditions” (what

conditions must be satisfied before access can be granted), and “obligations” (what actions must

be taken before access can be granted). Their framework, like i*, describes properties desired at

run-time, not the requirements engineer’s assumptions about the domains forming the solution.

Security requirements have been added to SCR (Heitmeyer, 2001) and to the WinWin

framework (In & Boehm, 2001). As with i* and KAOS, one can locate some trust assumptions

in both SCR and WinWin by looking for where the analyst stopped. The implicit decision to

limit the context almost certainly has some number of trust assumptions behind it.

Several people have described techniques that assist with reasoning about security by

postulating the existence of an attacker who attempts to exploit the system in a way that will

cause harm. Sindre and Opdahl introduced the idea of misuse and misactors into use cases to

identify potential security flaws in a system (2000). Their work concentrated on simplicity,

using the diagrams as a communications tool and saying that “misuse diagrams must only be

seen as a support for eliciting threats”. Alexander extended the relations over those presented by

Sindre et al., adding mitigation and restriction (2002a; 2002b). McDermott et al. described

abuse cases, concentrating on exploring the details of an exploit and documenting the route and

expertise needed to be successful (McDermott & Fox, 1999; McDermott, 2001). All of these

techniques employ use cases, an actor/action model, so they have many of the same

representation problems as i*. In these cases, an analyst’s trust assumptions are implicit in the

diagrams, and not made explicit. One can argue that the very choices of which cases to analyze

Chapter 3. Related Work

46

constitute trust assumptions, because the analyst is choosing which interactions are important. It

is worth noting that although these techniques do not capture trust assumptions in some explicit

way, they would be quite useful for testing validity of the satisfaction arguments built using

trust assumptions.

Srivatanakul et al. combined use cases with risk analysis techniques taken from safety

(Srivatanakul, Clark, & Polack, 2004), specifically HAZOP (Kletz, 1999; McDermid,

Nicholson, Pumfrey, & Fenelon, 1995). They extended the abuse and misuse case work

discussed above ((Alexander, 2002a, b; McDermott & Fox, 1999; McDermott, 2001; Sindre &

Opdahl, 2000)) by adding HAZOP ‘guideword’-driven analysis of use cases to find potential

abuses. One uses the guidewords to find deviations for the elements in a use case (e.g., actors,

associations, event flow, pre- and post-conditions). These deviations represent potential

violations of “security properties” of a system. If a security property is (potentially) violated, the

deviation represents a (potential) successful attack. One locates the vulnerabilities that were

exploited, then takes appropriate steps to close or mitigate the vulnerabilities. The method, like

misuse cases, abuse cases, and abuse frames (Lin, Nuseibeh, Ince et al., 2003), takes what might

be considered a bottom-up approach; the methods locate vulnerabilities that lead to security

requirements that, if satisfied, will ensure the closure of the vulnerabilities. If no vulnerabilities

are found, then the satisfaction argument has been bolstered. Finally, the technique employs use

cases and therefore has many of the same representation problems as i*.

Some of the work in the aspect-oriented requirements engineering (AORE) community is

related to identification of security requirements. Yu et al. proposed an extension to i* to model

softgoals, including security softgoals, as aspects (Yu, Leite, & Mylopoulos, 2004). Rashid et

al. propose that ideas from aspect-oriented software development can be used when mapping

non-functional requirements onto functional requirements (Rashid, Sawyer, Moreira, & Araújo,

2002; Rashid, Moreira, & Araújo, 2003). They start by identifying the non-functional

requirements (NFRs) that affect more than one functional requirement, determine what the

effect of the overlap is, then model the composition of the requirements. In their work, security

is treated identically to other NFRs. Context and assumptions are not taken into account.

 3.2. Expressing Security Requirements

 47

Brito and Moreira (2004) propose that non-functional requirements from an NFR catalog

(Chung, Nixon et al., 2000), be integrated with functional requirements using a composition

process. The composition process connects security goals with functional requirements and

permits supplying a priority for satisfaction arguments, but does not aid with the construction of

these arguments. None of this work incorporates capture of the assumptions made by a

requirements engineer when specifying a system.

3.2 Expressing Security Requirements

This section examines the literature through our second lens: how security requirements are

defined and their meanings understood. We look from the point of view that to be most useful,

security requirements should have the following characteristics of functional requirements: they

should be unambiguous, verifiable, and free of conflicts. In addition, given general security

goals, there should be a clear pathway to finding security requirements.

If the security requirements cannot be verified (recall that verification looks down the

hierarchy, in this case to establish that requirements are satisfied by the system), then one

cannot know if the system is appropriately secure. This problem often arises when security

requirements are expressed in ambiguous or overly general terms, such as “the system must be

secure” and “only authorized users can use the system.” Verifying the system against these

requirements requires one to guess at their meaning. The developers must somehow determine

what ‘secure’ means, who is a ‘user’, what users are authorized to do, and when they are

authorized to do it. What is needed is a way of expressing security requirements that avoids

these problems.

The need for avoiding and resolving conflict in security goals and requirements can be

illustrated by considering two stakeholder groups in a health care system: physicians and

regulatory compliance officers. Physicians have a duty of care; they are morally and in some

cases legally obliged to provide adequate care. They will demand from a system what they

consider sufficient functionality and privilege needed to carry out their duties. We see from

Anderson’s report (1996) that one privilege physicians frequently expect is to be able to discuss

Chapter 3. Related Work

48

a case with some other physician. However, privacy regulations require patient consent before

disclosure of information report (Anderson, 1996; Mouratidis, Giorgini et al., 2003). Regulatory

compliance officers are charged with ensuring the respecting of privacy regulations, meaning

that physicians must not share information with other physicians until the patient gives his or

her consent. We find here a conflict of duties (duty of care vs. duty of compliance) that will

affect who has which privileges in a system. However, the system's requirements in this

instance must be free of conflicts, because if not, the implementers may resolve the conflicts in

potentially inconsistent and incorrect ways. The conflict between rival stakeholders must be

resolved by the production of an agreed set of security requirements.

3.2.1 Security Requirements as Security Functions

It is common to express security requirements by describing the security mechanisms to be

used. For example, ISO 15408 (ISO/IEC, 1999a, b, c), a security specification that is the ISO

version of the Common Criteria (Common Criteria Sponsoring Organizations, 2006a, b, c),

provides examples of security requirements of the form (somewhat paraphrased) “The […]

Security Function (TSF) shall explicitly deny access of subjects to objects based on the [rules

…]” (ISO/IEC, 1999b: pg 48), where “rules” appear to be a mechanism. Regarding encryption,

one finds “The TSF shall distribute cryptographic keys in accordance with a [specified

cryptographic key distribution method] that meets the following: [list of standards]” (Ibid: pg

39). Again, a mechanism is being described. In addition, both examples say what the function is

to do, not the purpose it is to accomplish.

The NIST Computer Security Handbook states that “These [security] requirements can be

expressed as technical features (e.g., access controls), assurances (e.g., background checks for

system developers), or operational practices (e.g., awareness and training)” (NIST, 1995: pg

80), in effect defining security requirements in terms of functions and practices. Other security

guides imply that recommendations such as “Acquire Firewall Hardware and Software” (e.g.,

(Allen, 2001)) are requirements.

 3.2. Expressing Security Requirements

 49

Defining requirements in terms of function leaves out key information: what objects need

protecting and, more importantly, why the objects need protecting. Although both the ISO and

NIST documents say that the underlying reasons why objects are to be protected come from the

functionality of the system, they provide little guidance on how to connect the functionality to

the security needs. Instead of describing when and why objects are to be protected, they describe

what mechanisms are to be used to protect the objects.

It should be noted that the ISO and NIST guides are excellent sources of state-of-the-practice

security mechanisms. The requirements engineer would be well advised to consider the

functions described in these documents as excellent pointers to areas in a system that could

participate in security satisfaction arguments (see Chapter 6).

3.2.2 Security Requirements as Non-functional Requirements

Devanbu & Stubblebine (2000) remark that security requirements are a kind of non-

functional requirement. Kotonya and Sommerville (1998), when discussing non-functional

requirements, in which they include security, define them as "restrictions or constraints" on

system services. Similar definitions can be found in other textbooks. Rushby (2001) appears to

take a similar view, stating "security requirements mostly concern what must not happen".

Using the Tropos methodology, Mouratidis, Giorgini et al. state that "security constraints define

the system’s security requirements" (2003). Chung explicitly defines information security

requirements as non-functional requirements (Chung, 1993; Chung, Nixon et al., 2000).

Firesmith defines security requirements as “a quality requirement that specifies a required

amount of security […] in terms of a system-specific criterion and a minimum level […] that is

necessary to meet one or more security policies.” (Firesmith, 2003a, 2004). This appears to be a

form of constraint, an impression reinforced by an example he provides: “The [application] shall

protect the buyer-related data […] it transmits from corruption […] due to unsophisticated

attack [when] […] Buyer Buys Item at Direct Sale [to a level of] 99.99%.”

The problem with these definitions is their lack of specificity and guidance for the designers.

What “system services” are being constrained? What effect will the constraint have on the

Chapter 3. Related Work

50

functionality of the system? How can any eventual chosen constraint be validated to ensure that

it accurately reflects the stakeholders’ wishes? Referring to Firesmith’s example, what is an

“unsophisticated attack?” What does the measure “99.99%” mean? It could mean that if 10,000

attacks are known, the developers can ignore one. Alternatively, it could be a way of saying

“all” without actually saying it.

One major problem with percentage-style quantification of security requirements is the

binary nature of the majority of security attacks; in most cases, an attack works or it does not. If

an attack does not work the first time, it probably will not work the second time unless the

parameters of the attack or the system state are changed. Anti-intrusion measures such as

account lockout help ensure that attacks following a failed attack attempt will have a lower

probability of success. On the other hand, if the attack works once (the system is penetrated),

then the attack will likely continue to work until the vulnerability is removed. Successful attacks

can (usually) be repeated as often as the attacker wishes, and even shared amongst attackers4. In

high-threat situations, a successful attack will almost certainly occur (Redwine, 2006: pg 80). It

is difficult to know what the percentage quantification means in these cases.

Although we agree with defining security requirements as constraints, we argue that two

precisions are necessary: a more precise definition and representation of constraints, and a way

of moving from business goals to constraints.

3.2.3 Security Requirements from Privacy & Trust

Some researchers look at security from the point of view that if an agent can trust that

information it ‘owns’ is kept private, then security goals will be met. De Landtsheer proposes

modeling which properties that agents, authorized or not, can know (De Landtsheer & van

Lamsweerde, 2005). The Tropos project (Giorgini, Massacci et al., 2005 and several others)

takes a similar view, but extended to include agents’ intentions and explicit trust delegation.

4 One example is “script kiddie” attacks, where an experienced attacker produces toolkits for inexperienced attackers to use.

 3.2. Expressing Security Requirements

 51

Breaux Vail, and Antón (2006) extract privacy rights and obligation information from “policy

documents” to assist with development of security requirements.

These approaches work well in contexts and problems dominated by privacy concerns. They

are less effective when considering vulnerabilities in a system context. They are also less

effective in applications where privacy (c.f. confidentiality) is not the dominant concern. The

example in Chapter 7 is one such case. Air traffic control is dominated by integrity and

availability concerns; high confidence is needed that airplanes are where they say they are.

3.2.4 Other Portrayals of Security Requirements

Many authors implicitly assume that security requirements are identical to high-level security

goals. Tettero et al are explicit about this, defining security requirements as the confidentiality,

integrity, and availability of the entity for which protection is needed (Tettero, Out, Franken, &

Schot, 1997). While this is a clear definition, in some cases it may not result in precise enough

requirements. In the above example, both doctors and the administrators would probably agree

on the importance of confidentiality, integrity, and availability of the clinical information, but

they would disagree on the concrete security requirements that express those goals. The

requirements need to be more explicit about who can do what, when.

Some authors identify security requirements with security policies. Devanbu & Stubblebine

(2000) define a security requirement as “a manifestation of a high-level organizational policy

into the detailed requirements of a specific system. [… We] loosely (ab)use the term 'security

policy' […] to refer to both 'policy' and 'requirement'”. Anderson (2001) is less direct; he states

that a security policy is “a document that expresses […] what […] protection mechanisms are to

achieve” and that “the process of developing a security policy […] is the process of

requirements engineering”. Redwine (2006) reports that the “software system security policy is

part of software system requirements placing constraints on system behavior”. The difficulty

with security policies is their chameleon-like meaning. As the discussion above shows, the term

can be used for anything from a high-level aspiration to an implementation. Therefore, without

Chapter 3. Related Work

52

accompanying detailed explanation, it is not satisfactory to define security requirements as

security policies.

Lee et al. (Lee, Lee, & Lee, 2002) point out the importance of considering security

requirements in the development life cycle, but do not define them. ISO/IEC 15408 (ISO/IEC,

1999c) does not define security requirements in its glossary. However, in one place, they are

depicted as being at a higher level than functional requirements, but in another as "security

requirements, such as authorization credentials and the IT implementation itself", which appears

to be at too low a level. Heitmeyer (2001) shows how the SCR method can be used to specify

and analyze security properties, without giving the criteria for distinguishing them from other

system properties.

A number of papers have focused on security requirements by describing how they may be

violated. For example, McDermott & Fox (1999), followed independently by Sindre & Opdahl

(2000) and elaborated by Alexander (2003), describe abuse and misuse cases, extending the use

case paradigm to undesired behavior. Liu, Yu & Mylopoulos (2003) describe a method of

analyzing possible illicit use of a system, but omit the important initial step of identifying the

security requirements of the system before attempting to identify their violations. One could

argue that Chivers and Fletcher (2005) are in this camp with SeDAn, as they focus on attackers

and the paths they might take into a system. One consequence of these approaches is that they

indicate what a system is not to do in specific situations, but not in the general case. General

security requirements must be inferred from the list of undesirable situations.

Van Lamsweerde (2004) describes a process by which security goals are made precise and

refined until reaching security requirements; see section 3.1.2 for more detail. Antón & Earp

(2001) use the GBRAM method to operationalize security goals for the generation of security

policies and requirements, but do not define security requirements.

Mead et al. in the SQUARE methodology (2005) describe security requirements as being at

the system level or the software level. They do not define what requirements are, beyond saying

that “Requirements are concerned with what the system should do”. They also introduce the

 3.3. Use of Design Rationale and Argument Capture for Verification

 53

notion of “architectural constraints” that specify “how it should be done,” leaving open how one

distinguishes between a constraint that a system use an existing authentication system and a

requirement that the system support authentication in a given context. Our framework fits well

within SQUARE, providing a pathway from goals to requirements, and making the

requirements (or constraints) implied by the context clear.

3.3 Use of Design Rationale and Argument Capture for Verification

Our third lens, the use of design rationale and argument capture for security requirements

verification, is used in this section.

The work presented in this thesis is related to, and builds upon, research on design rationale

and argument capture, on safety requirements analysis, and more generally on ideas behind

problem domain analysis.

3.3.1 Design Rationale

Design rationale is principally concerned with capturing how one arrived at a decision,

alternate decisions, or the parameters that went into making the decision (Lee & Lai, 1991). For

example, Buckingham Shum focuses on how rationale (argument) is visualized, especially in

collaborative environments (2003). Potts and Bruns (1988), and later Burge and Brown (2004)

discuss capturing how decisions were made, which decisions were rejected, and the reasons

behind these actions. Mylopoulos et al. (Mylopoulos, Borgida, Jarke, & Koubarakis, 1990)

present a way to represent formally knowledge that was captured in some way, without focusing

on the outcome of any decisions. Ramesh and Dhar (1992) describe a system for “capturing

history in the upstream part of the life cycle.” Fischer, Lemke et al. (1996) suggest that the

explicit process of argumentation can itself feed into and benefit design. Finkelstein and Fuks

(1989) suggest that the development of specifications by multiple stakeholders who hold

disparate views may be achieved through an explicit dialogue that captures speech acts, such as

assertions, questions, denials, challenges, etc. The representation of the dialogue is then a

rationale for the specifications constructed. The common element in all of the above work is the

Chapter 3. Related Work

54

capture over time of the thoughts and reasons behind decisions. Whether the decisions satisfy

the needs is not the primary question.

When analyzing security requirements, the ultimate goal is to convince a reader that the

security requirements can be satisfied, and that nothing is omitted that could result in the

requirements not being satisfied. The process used is relevant only as it relates to completeness.

Optimality is not part of the argument. Of course, we make no claim that it is useless to have the

history that led to the final arguments; such a history will certainly be useful if the arguments

fail to convince, or if the situation changes.

3.3.2 Safety Cases

Kelly (1999) argues that “a safety case should communicate a clear, comprehensive and

defensible argument that a system is acceptably safe to operate in a particular context.” He goes

on to show the importance of the distinction between argument and evidence. An argument calls

upon appropriate evidence to convince a reader that the argument holds.

Attwood and Kelly (2004) use the same principles, taking the position that argument forms a

bridge between requirements and specification, permitting capture of sufficient information to

realize rich traceability. Combining the two ideas, argument for safety cases and using

arguments for traceability, Kelly’s quote presented above is paraphrased as “a security

satisfaction argument should communicate a clear, comprehensive, and defensible argument that

a system is secure enough to operate in its context.”

The techniques proposed by Kelly are not directly applicable to security without

modification, primarily because the techniques are focused around objective evidence,

component failure, and accident; rather than subjective reasoning, subversion, and malicious

intent.

3.3.3 Problem Domain Analysis

Zave and Jackson in (1997), and Jackson in (2001), argue that one should construct a

correctness argument for a system, where the argument is based on known and desired

 3.4. Chapter Summary

 55

properties of the domains involved in the problem. To quote Jackson, “Your [correctness]

argument must convince yourself and your customer that your proposed machine will ensure

that the requirement is satisfied in the problem domain.” This position is the same as Kelly’s,

with the proviso that Kelly’s arguments focus equally on all domains, with no special emphasis

on the machine.

Correctness arguments apply to security requirements, with a significant distinction. It is very

difficult to talk about correctness when discussing security. One can convince the reader that the

proposed system meets the needs, but it is far more difficult to prove that the system is correct.

The distinction between convince and prove (or show) is important. It is not possible to prove

the negative – that violations of security goals do not exist – but one can be convincing that

sufficient outcomes have been addressed.

3.4 Chapter Summary

The review of the literature shows that our three criteria for adequate security requirements

are not yet adequately satisfied by existing work. To reiterate, our criteria are:

1. Clarity: one must have a clear understanding of what security requirements mean, and their

effects within the system context in which they apply.

2. Incorporation of assumptions about behavior: security requirements must take into

consideration an analyst’s implicit or explicit decisions to trust behavior of objects found in

the system.

3. Satisfaction: one must be able to determine whether the security requirements satisfy the

security goals, and if the system can satisfy the requirements.

Our contributions flow directly from a desire to satisfy all the criteria. To satisfy the first

criterion, we propose a framework for security requirements engineering explicitly

incorporating system context. To satisfy the second, we propose the use of trust assumptions in

security requirements. To satisfy the third, we propose combined formal/informal security

requirements satisfaction arguments.

Chapter 3. Related Work

56

 57

Chapter 4. Trust Assumptions

Recall that a system comprises not only software, but also all the diverse constituents needed

to achieve its purpose. For example, a computing system clearly includes the computers, but

also incorporates real-world elements such as the people who will use, maintain, and depend on

the system; the physical and logical environment within which the system will exist; and any

systems already in place. When operating in a systems context, the requirements engineer must

determine which real-world elements are to be included in the analysis. The analyst must define

the context within which requirements analysis takes place by selecting the domains (the

aforementioned real-world constituents) that are considered pertinent (Jackson, 1995, 2001). In

doing so, the analyst reduces the size of the context to those domains relevant to the problem.

As explained in Chapter 1, one factor influencing an analyst’s choice about whether or not a

domain is relevant to a system’s security, and therefore to be included in the context, is the

analyst’s set of trust assumptions. Trust assumptions are explicit or implicit choices not to

challenge some described characteristics of domains, and can have a significant impact on the

security of a system. To repeat the example from Chapter 1, most analysts implicitly assume

that the compiler is not a security risk; it would not occur to them to include it in the analysis.

Thompson demonstrated that this assumption is not necessarily justified by showing how a

compiler could introduce trapdoors into applications (1984). Thompson’s example and the other

in Chapter 1 illustrate how the requirements engineer’s implicit trust of some domains in the

environment can introduce unknown amounts of risk into the system.

Although these examples demonstrate the need to capture and analyze trust assumptions,

little exploration has been done on how to find, represent, and quantify them; and then to

analyze their effect on the system under discussion. We correct this omission by first providing

a better understanding of what trust assumptions are, and then by making explicit their place

Chapter 4. Trust Assumptions

58

within satisfaction arguments. This chapter provides the former, a better understanding, by

examining trust assumptions as independent artifacts used in very informal argumentation.

Chapter 6 presents the latter, putting them into the context of satisfaction arguments.

4.1 Definition of Trust Assumptions

We define a trust assumption as a choice made by a requirements engineer to depend upon a

domain having certain properties, in order to satisfy a security requirement. The requirements

engineer trusts the assumption to be true. These assumed properties act as domain restrictions;

they restrict the domain in some way that contributes to the satisfaction of the security

requirement.

4.1.1 Purpose of Trust Assumptions

The requirements engineer is responsible for constructing an argument that security

requirements are satisfied – the satisfaction argument. In most cases, the satisfaction argument

cannot be made without depending on domain properties that cannot be verified with the

information available in the context. The requirements engineer has a choice: either add a trust

assumption that asserts that the properties are valid, or expand the scope as necessary to verify

the properties, which is a highly recursive process. By choosing to add a trust assumption, the

requirements engineer ends the recursion and explicitly limits the scope of the analysis.

To illustrate making the choice to expand the scope or adding a trust assumption, assume the

existence of a security requirement stipulating that the computers operate for at least eight hours

in the event of a power failure (an availability requirement). The requirements engineer,

working with the designers and the stakeholders, can satisfy this requirement by adding backup

generators to the system. Appropriate phenomena would be added so that the machine can

detect the power loss, control the generators, detect going beyond eight hours, etc. In most

situations, the requirements engineer can trust the manufacturer of the generators to supply

equipment that does not intentionally permit an attacker to take control of the generators and

prevent them from operating (a denial of service attack). The analyst trusts the behavior of the

 4.1. Definition of Trust Assumptions

 59

generators, and adds a trust assumption to that effect. By adding the trust assumption, the

requirements engineer does not need to include the manufacturer of the generators in the

analysis. The analyst uses the trust assumption to limit the scope of the analysis.

As explained above, trust assumptions contribute to the satisfaction of security requirements.

There is not necessarily a one-to-one correspondence between a trust assumption and the

security requirements satisfied. Several trust assumptions may be necessary to satisfy a security

requirement (an and decomposition), any one of several trust assumptions may be sufficient to

satisfy a security requirement (an or decomposition), or some combination of the two. In

addition, one trust assumption may play a role in satisfying multiple security requirements.

4.1.2 The ‘Trust’ in Trust Assumptions

We must first define what we mean by trust in trust assumptions. We use a variant of the

definition of trust proposed by Grandison & Sloman (2003): “[Trust] is the quantified belief by

a trustor with respect to the competence, honesty, security and dependability of a trustee within

a specified context”. In our case, the requirements engineer trusts some domain to participate

‘competently and dependably’ in the satisfaction of a security requirement in the context of the

problem.

In the Grandison & Sloman definition, the quantification of trust represents the level of

confidence that the trust assumption is valid. Said another way, the quantification represents the

risk that including the trust assumption, and thereby limiting the scope of analysis, may not be

justified. In this thesis, the quantification is binary; the trust assumption is thought to be valid,

or it is not.

The Thompson (1984) example in the introduction gives us an example of a trust assumption.

An analyst’s (probably implicit) trust of the compiler vendor not to include trapdoor generators

in the compiler may be misplaced. If the compiler has been compromised, then some number of

vulnerabilities may exist, such as the existence of a universal password, denial-of-service traps,

or information leaks. Successful attacks using these vulnerabilities will have some impact on the

organization: they will cause harm. The organization must decide whether the risk presented by

Chapter 4. Trust Assumptions

60

the vulnerabilities that might come into existence if the trust assumption is not valid is sufficient

to justify the time and expense of the expansion of the analysis required to verify the compiler.

The risk presented by a trust assumption is not the same as the risk associated with a

vulnerability that might exist if the trust assumption is not valid. The risk presented by a trust

assumption measures how likely it is that the vulnerability might exist if the trust assumption is

invalid. The risk associated with a vulnerability measures the likelihood that the vulnerability

can be successfully exploited, along with the impact of a successful exploit. As the example in

the previous paragraph shows, the two measures are independent. If a compiler has been

compromised to modify the password checker of the login program (the case described by

Thompson), the trust assumption is invalid and the risk of the existence of a vulnerability is

high. However, if the login program is not used in a system, then the risk presented by the

vulnerability is nil, regardless of the validity of a trust assumption stating that the compiler

vendor can be trusted.

A discussion of formal risk analysis is outside the scope of this thesis, and will not be further

discussed.

4.1.3 Representation of Trust Assumptions

A trust assumption consists of the following information:

• Identification of the dependent domain. The trust assumption restricts this domain.

• Effect of the trust assumption. The trust assumption a) restricts instances of the domain to

be instantiations of some class or members of some set, b) restricts phenomena on the

interfaces of the domain, or c) some combination of the two. Note that phenomena

restrictions can be an assertion that some phenomena will not appear on the interface, or

will only occur in a specific sequence/interchange.

• Narrative description of the restriction(s). If the trust assumption restricts the instances of a

domain type, then describe the attributes of instances of the domain type before and after

application of the restriction (in effect, a description of the subtype). If the trust assumption

 4.1. Definition of Trust Assumptions

 61

restricts phenomena, then describe the restriction and its effect on the valid interplay of

phenomena. At this point, when discussing the validity and effect of the restrictions in this

section, the analyst should take the position that the trust assumption is valid.

• Preconditions. Some trust assumptions may be considered valid only if some other

conditions are true. Some examples might be the earlier application of some other trust

assumption to the dependent domain and/or the existence of domains not otherwise

included in the analysis.

• Justification for the inclusion of the trust assumption. This is not a justification of the

restrictions, but is instead an informal discussion of why the trust assumption should be

considered valid. If there are risks associated with the trust assumption, they should be

listed and discussed.

• List of security requirements (the constraints) that this trust assumption satisfies partially

or completely. A trust assumption participates in satisfaction of a security requirement is

by appearing in a satisfaction argument for that requirement.

4.1.4 Trust Assumptions as Domain Restrictions

Trust assumptions either restrict instances of a domain to some subtype, restrict the

phenomena that a domain can produce, or both. To illustrate restricting instances of a domain’s

type, consider a company’s door security system. By restricting entrance to people who pass the

system’s test (whatever that is), the system in effect changes the type of the domain from People

to Employees. To illustrate restricting phenomena, consider the output of the balance enquiry

function of an ATM. The analyst might assume that the ATM displays the information for the

account indicated by the card, not some other account. The trust assumption is that no defects

exist that would cause the ATM to display information for some other account.

Chapter 4. Trust Assumptions

62

4.2 Worked Example

The Secure Electronic Transaction (SET) Specifications (Secure Electronic Transaction LLC,

1997a, b, c) describe a set of mechanisms intended to provide an acceptable level of security for

on-line purchasing. This worked example looks at incorporating the SET specifications into

software to support cardholder-side payment authorization. There is one functional requirement

(in the problem frames sense): Complete the Purchase. This example considers one asset,

Customer Account Information (CAI), and one derived security goal Purchases shall be

authorized. Several trust assumptions are derived during the analysis.

To derive the trust assumptions, we first determine what actions might cause harm, then

negate these actions to express the security requirements (the constraints). (Describing threats is

described further in Chapter 5.) Two such action/harms are used in this example: exposure of

cardholder account information could lead to financial loss (from the confidentiality concern),

and unauthorized use of cardholder credentials could lead to financial loss (from the integrity

concern). We next add security requirements (constraints) to the requirements:

SR1: only authorized individuals may use the cardholder credentials.

and

SR2: only authorized users may see the CAI

The trust assumptions needed to satisfy the security requirements will be described in a later

section.

4.2.1 SET Overview

SET describes a series of operations between players in an electronic purchase transaction

using a credit card. In SET, a cardholder requests a cryptographic certificate from a certificate

authority (CA). The CA verifies that the cardholder has a credit card account with an issuer, and

then supplies a certificate. The cardholder can subsequently use the certificate to make

purchases from a merchant. The merchant uses a payment gateway to pass the transaction to the

acquirer (the merchant’s bank) for collection. The acquirer normally operates the payment

 4.2. Worked Example

 63

gateway. Figure 4-1 presents a simplified version of the SET “processing flows” (terminology

from (Secure Electronic Transaction LLC, 1997c)), showing the players and the messages they

interchange. The arrows represent the direction of the flow of a message. The numbers in the

boxes indicate sequence. Several SET messages and fields that do not have a direct bearing on

this discussion have been omitted from the diagram, in particular the obtaining of certificates

and private keys, and the initial verification of cardholder information. In addition, the diagram

shows the merchant using the CAI, which although optional in SET is the technique that the

SET specifications claims will be the most often used. (Secure Electronic Transaction LLC,

1997b: pg 14)

4.2.2 SET-Identified Security Assumptions

The SET specifications make the following security-related assumptions about the SET

environment relevant to this worked example. They are relevant because they point us at

vulnerabilities considered by the writers of the SET specifications.

• SA1: The cardholder ensures that no one else has access to his/her private key. (Secure

Electronic Transaction LLC, 1997c: pg 16) In particular, SET software vendors shall

“ensure that the certificate and related information is stored in a way to prevent

unauthorized access.” (Ibid: pg 46)

Payment Gateway
(acquirer)

5: Authorize (CAI, AMT)

6: OK AUTH

10: Pay (CAI, MAI, AMT)

11: OK PMT

8: OK Purchase

3: Give (PI, pgCAI)

2: OK (Certs, TI)

1: Checkout (Certs)

Shop
9: Rqst Payment (TI, AMT)

7: OK AUTH (meCAI)

4: Authorize (PI, TI)

Merchant

12: OK PMT
Cardholder

Issuer
Certs: Public Key SET
certificates

CAI: Cardholder Account
Information

meCAI CAU encrypted w/
merchant key

pgCAI: CAI encrypted w/
pmt gateway key

MAI: Merchant Account
Information

TI: Transaction Identifier

Figure 4-1 – Simplified SET processing flows

Chapter 4. Trust Assumptions

64

• SA2: Cardholder, merchant, and payment gateway machines are free of viruses and trojan

horses, and are not susceptible to being hacked. (Secure Electronic Transaction LLC,

1997c: pg 11)

• SA3: Programming methods and the cryptographic system, and in particular, the random

number generators, are of the highest quality. (Ibid: pg 16)

• SA4: The merchant’s system stores account information in an encrypted form, and if

possible off-line or behind a firewall. (Secure Electronic Transaction LLC, 1997b: pg 39)

4.2.3 The Initial Problem Diagram

There is only one requirement in this worked example and therefore only one problem

diagram. The context does not include the shopping process, but instead focuses on the point

where a purchase is completed. Figure 4-2 shows a first-cut problem diagram, built by

considering the SET processing flows.

Recall from the discussion at the beginning of this section that there are two security

requirements to be satisfied: SR1: only authorized individuals may use the cardholder

credentials, and SR2: only authorized users may see cardholder account information (CAI).

CAI is made visible by the CAI phenomena in the problem diagram, and the asset cardholder

credentials is stored in the machine. Our goal is to generate an informal argument that these

security requirements are satisfied.

Merchant

Machine
stores CAI
+ priv keys

Users

Display
results

MA!checkout()
ME!OK_purchase
MA!give()
ME!OK

US!authorize

MA!result()

Authorize purchase
- SR1: Only auth

users may use
creds
SR2: Only auth
users may see CAI

Figure 4-2 – Purchase problem

 4.2. Worked Example

 65

By tracing the CAI through the problem diagram, one sees that it must reside in unknown

form within the Machine domain. According to the SET specification, the CAI must be

encrypted between the machine and the merchant. There is nothing in the problem description

(problem diagram) that indicates that only the user or the merchant can see the CAI. One can

say the same thing about cardholder credentials. We can say nothing about whether SR1 or SR2

are satisfied. We use these observations, the requirements SR1 and SR2, and the security

assumptions SA1-SA4 to make the following trust assumptions5:

• TA1-1 – satisfaction of SR1: As the credentials are stored on the machine, and as there is

no apparent way to limit who can access these credentials, SA1 forces us to assume that

the domain Users in the problem contains only individuals authorized to use the

credentials.

• TA1-2 – satisfaction of SR1: The CAI and credentials are not visible outside the machine.

(SA2)

• TA1-3 – satisfaction of SR1: The generated symmetric encryption keys are crypto-

graphically secure. (SA3)

• TA1-4 – satisfaction of SR1 and SR2: The merchant cannot know the cardholder’s private

key, and therefore cannot see the CAI as it passes through to the payment gateway.

The first trust assumption TA1-1, that the domain Users contains only authorized individuals,

is clearly risky, making the argument that SR1 is satisfied very problematic. There is no

information available in the context to justify the claim. The analyst should change the problem

to eliminate the trust assumption and reduce the risk. A similar statement must be made about

TA1-2, because nothing can be found in the context that allows the engineer to claim that the

storage is secure. If the information can be read without supplying some credentials that are not

stored on the machine, then the existence of viruses, spyware, and other programs/users make

the trust assumption’s claim ludicrous. Vulnerabilities permitting realization of the threats still

5 The labeling TA1-n instead of TAn is used because we will make a second set of trust assumptions TA2-n later.

Chapter 4. Trust Assumptions

66

exist, and appropriate domains and phenomena must be added to close the vulnerabilities and

satisfy the requirement.

Verifying TA1-3 is probably not necessary, assuming that the cryptographic software comes

from a company that the requirements engineer believes has verified its applications. If the

engineer is uncomfortable with this belief, then a domain representing the encryption software

company must be added to the problem, and then analyzed appropriately.

TA1-4 serves to limit the scope of the analysis, stating that nothing on the other side of the

merchant can expose CAI to the merchant. Unfortunately, the SET processing flows diagram

(Figure 4-1, step 7) shows that the payment gateway can give the CAI back to the merchant.

The trust assumption is invalid and must be removed.

Because TA1-1 was rejected, a passphrase has been added to verify that the user is

authorized. The passphrase is used to encrypt the CAI and certificate storage. Use of the

passphrase and encryption protects the CAI against both viruses and other users of the machine.

Spyware that can capture the entry of the passphrase is still a problem, one that is not further

discussed in this thesis. Because the rejection of TA1-1 & TA1-4 caused the system to be

modified, we do not look further at TA1-2.

 4.2. Worked Example

 67

Figure 4-3 presents the modified problem. The context has been expanded to include the

payment gateway.

Thinking about the satisfaction argument using the new problem diagram exposes the need

for the following trust assumptions:

• TA2-1 – satisfaction of SR1 and SR2: Users will not expose the passphrase, ensuring that

only authorized individuals use the credentials (SR1) and that authorized individuals may

see the CAI (SR2)

• TA2-2 – satisfaction of SR2: The merchant implements the SET recommendations and

securely stores the CAI. There is no practical way to bypass this security, regardless of

storage medium (operational, backup, etc.)

• TA2-3 – satisfaction of SR2: The merchant’s employees authorized to see the CAI will not

reveal it.

• TA2-4 – satisfaction of SR2: The CAI never appears in the clear on the merchant’s internal

LAN – Local Area Network.

• The same trust assumptions that apply to the merchant also apply to the payment gateway.

Merchant

Machine

Users

Display
results

MA!checkout(…)
ME!OK_purch
MA!give(…)
ME!OK

US!authorize(passphrase)

MA!result(…)

Authorize
purchase
- SR1: Only auth

users may use
creds
SR2: Only auth
users may see
CAI

Payment
Gateway

ME!authorize(…)
PG!OK_AUTH

MA!GetInfo(passphrase)
ST!Info(...)

Encr. Storage
CAI & creds

Figure 4-3 – Purchase problem (second try)

Chapter 4. Trust Assumptions

68

Figure 4-4 presents the solution along with the four trust assumptions. To reduce the

complexity of the diagram, we do not show the phenomena or the trust assumptions applied to

the payment gateway. The trust assumptions are represented diagrammatically by an arc from

the dependent domain to an oval containing a short summary of the depended-upon properties.

The risk presented by TA2-1, that the passphrase will not remain confidential, may or may

not be acceptable. Personal experience indicates that it was not acceptable to at least one bank.

When BNP (Banque Nationale de Paris) announced its SET implementation, the bank sent a

smartcard reader to each customer who agreed to use SET. The user was required to know the

passphrase, to insert the appropriate smartcard into the reader, and to know the PIN for the card.

Learning the passphrase was not sufficient. One needed a second phrase (the PIN) and physical

possession of the card.

The remaining trust assumptions are problematic. There is no practical way for a

requirements engineer to examine every merchant and payment gateway company, so the

assumptions must be accepted at face value.

The trust assumptions required to fulfill the security requirement might provoke a debate

about whether a customer-side product based SET is worth constructing. Given that the CAI can

be stored on the merchant’s machine, the difference between a SET solution and the ubiquitous

solution based on SSL (secure sockets layer) is not large. Using SET, it is more difficult for a

merchant to change an order, but a dishonest merchant would have no problem creating new

non-SET orders charged to the customer. Dishonest merchants and employees could sell the

Merchant

Machine

Users

Display
results

Authorize purchase
- SR1: Only auth users

may use creds
SR2: Only auth users
may see CAI

Payment
Gateway

Encr. Storage
CAI & creds

TA2-1: Users:
won’t expose

passphrase

TA2-2: Merchant:
implements SET

recommends

TA2-3: Merchant:
emps won’t reveal

CAI

TA2-4: Merchant:
CAI not on LAN

unencrypted

Figure 4-4 – Purchase problem (third try)

 4.3. Chapter Summary

 69

account information. Hackers could steal it. The requirements engineer can do nothing to

mitigate the problems exposed by these trust assumptions. The stakeholders must decide

whether the risks are acceptable. It is interesting to note that SET has been largely abandoned.

4.3 Chapter Summary

This chapter introduced one of our contributions: trust assumptions. We have provided an

approach for using trust assumptions when reasoning about the satisfaction of security

requirements. The approach uses the strong distinction between system requirements and

machine specifications found in problem frames, permitting the requirements engineer to choose

how to conform to the requirements. The trust assumptions embedded in the solution inform

requirements engineers, better enabling them to choose between alternate ways of satisfying the

functional requirements while ensuring that vulnerabilities are removed or not created. Finally,

trust assumptions provide a foundation for making informal satisfaction arguments about the

security of a proposed system.

 The informal arguments presented in this chapter suffer from three flaws. The arguments

have a very informal structure, and are not amenable to analysis. Justification of trust

assumptions can introduce other trust assumptions, and this is not accounted for. Finally, there

is no systematic exploration of the linkages between the argument and the trust assumptions.

Our proposed security requirements framework, described in the next two chapters, addresses

these problems by:

• better defining security requirements and relating them to security goals.

• placing security requirements in a framework that explicitly permits iteration and

requirements replacement.

• adding a formal security satisfaction argument that incorporates trust assumptions into the

premises.

• adding a recursive informal satisfaction argument that permits one to argue the validity of

trust assumptions, perhaps by (recursively) creating other trust assumptions.

Chapter 4. Trust Assumptions

70

 71

Chapter 5. A Security Requirements Framework

The literature review in Chapter 3 and the discussion of trust assumptions in Chapter 4

exposed several security requirements problem areas:

• Multiple definitions of security requirements

• Inconsistent and difficult to understand satisfaction criteria for security requirements

• No structure for verifying that a system can satisfy the security requirements

• No explicit inclusion of the analyst’s trust assumptions

• A general lack of a clear pathway for deriving security requirements from business goals.

 We propose a security requirements framework to address these problems6, facilitating an

understanding of the elicitation, validation, and verification of security requirements and other

artifacts by integrating the concepts of the two disciplines of requirements engineering and

security engineering.

The framework takes two concepts from requirements engineering: the concept of business

goals that are operationalized into functional requirements while applying appropriate

constraints, and the concept of satisfaction (or adequacy) arguments. From security engineering,

the framework concept of assets, together with threats of harm to those assets. In our

framework:

• Security goals and security requirements aim to protect assets from harm.

6 The framework was first described in (Moffett & Nuseibeh, 2003) and substantially elaborated in (Moffett, Haley et al., 2004)

Chapter 5. A Security Requirements Framework

72

• Primary security goals are operationalized into primary security requirements, which take

the form of constraints on the functional requirements sufficient to protect the assets from

identified harms. Primary security requirements are, consequently, preventative.

• Feasibility, tradeoff, and conflict analyses (Redwine, 2006: pg 81) may lead to the addition

of secondary security goals, which will (eventually) manifest themselves as additional

functional and/or secondary security requirements. Secondary security goals and

requirements may call for detective or preventative measures, a possibility discussed

further below.

• Security satisfaction arguments show that the system can respect the security requirements.

The framework assists with understanding the place of security requirements within the

development of an individual application, along with the relationships between the security

requirements and other artifacts produced during development.

5.1 Framework vs. Process

This thesis proposes a framework within which development processes might function. One

might think of the framework as a set of ordered milestones, indicating by when certain artifacts

are to have been produced. The framework says that one should produce X and Y, and that one

must produce X before one can produce Y, but it says nothing about how one produces X or Y.

The how would be a process: a set of steps that if followed should allow one to make the

transition from X to Y. The distinction is important because most organizations have a process

they follow, so imposing one would be difficult. However, a process can be fitted into this

framework if the process produces visible functional requirements, and if the user of the process

will produce context and problem diagrams along with the other artifacts already produced by

the process.

One difficulty with describing a framework is that many steps or outputs are abstract or

unspecified. To overcome this difficulty, in this thesis we instantiate the framework using a

 5.2. Definition of Security Goals

 73

combination of Goal-Oriented Requirements Engineering (van Lamsweerde, 2001) and Problem

Frames (Jackson, 2001), describing it in terms of a set of activities.

5.2 Definition of Security Goals

Security goals are derived from the business goals of the system (Allen, 2001). Some number

of actors, operations, and objects will be required to satisfy the business goals. To paraphrase

somewhat the introduction to this thesis, security goals arise when stakeholders establish that

they wish to avoid harm to some objects in the context of the system, be they tangible (e.g.,

cash) or intangible (e.g., information), that have direct or indirect value. Objects valued in either

way are called assets, and the stakeholders naturally wish to protect themselves from any harm

that might come from abusing these assets.

Harm may not be to the asset itself (direct harm), but instead may be a consequence of some

misuse or abuse of the asset (indirect harm). Examples of indirect harm include damage to

reputation caused by exposure of flawed hiring policies, loss of contracts caused by exposure of

pricing or costing information, or loss of trade secrets through the theft of some newly designed

widget. In other words, one is not necessarily protecting assets from harm, but is instead

protecting against harm caused by abuse of assets. Consider the case where the asset is

confidential information, such as the design for an unreleased product. Abusing the information

by making it public does not harm the information, but future revenue of the company could be

adversely affected. Now consider the case of the destruction of a building. One harm is direct:

the cost of replacing the building. However, other harms are possible, such as (again) the loss of

future revenue caused by the inability to do business. In this case, there are multiple harms, each

with diverse risk and impact, which might require different protections.

One set of security goals describe conditions that must be avoided in order to keep the level

of harm to an acceptable level. For example, tangible assets might be destroyed, stolen, or

modified; the harm is the loss of the asset itself (direct harm). Information assets might be

destroyed, revealed, or modified; the harm could be the loss of the asset (direct harm) or the

consequences of exposing the asset (indirect harm).

Chapter 5. A Security Requirements Framework

74

The security community has enumerated some general security concerns, labeling them with

the letters C, I, A, and more recently a second A ((Pfleeger & Pfleeger, 2002) and other security

textbooks):

• Confidentiality: ensure that an asset is visible only to actors authorized to see it.

Confidentiality is larger than ‘prevent read access to a file’. For example, it includes

controlling visibility of a data stream on a network, and of papers on someone’s desk.

• Integrity: ensure that the asset is not corrupted. Integrity is larger than ‘prevent write

access to a file’, for example including ensuring that transactions that should not occur

indeed do not, that the contents of backup media are not changed, that incorrect entries in a

paper-based accounting system are not made, and data streams are not modified between

their endpoints.

• Availability: ensure that the asset is readily accessible to agents that need it, when they

need it. A counterexample is preventing a company from doing business by denying it

access to something important, such as access to its computer systems or its offices.

• Authentication: ensure that the identity of the asset or actor is known. A common example

is the simple login. More complicated examples include mutual authentication (e.g.,

exchange of cryptography keys), and intellectual property rights management.

By connecting these general concerns to the assets implicated in a system, and then

postulating actions that would violate these concerns (that would be an abuse of the asset), one

can construct extended descriptions of possible threats to assets. These threat descriptions

(Haley, Laney et al., 2004c) are phrases of the form performing action X on/to/with asset Y

could cause harm Z. Threat descriptions permit a form of asset-centered threat modeling, and

are represented by a three-element tuple: the asset, the action that will exploit the asset, and the

subsequent harm. Threat descriptions are generated by enumerating the assets involved in the

system, then for each asset, listing the actions that exploit the asset to cause direct or indirect

harm. The action is derived from the security concern; it does not name a specific vulnerability

or attack path. For example, one can imagine erasing (an action related to the integrity concern)

 5.2. Definition of Security Goals

 75

the customer records (the asset) of a company to cause loss of revenue (the harm). A set of

security goals is found by negating the threat descriptions, which in goal-oriented requirements

engineering terms makes them into prevent (or avoid) goals.

Another set of security goals can be found by combining management control principles and

application business goals. Management control principles include common security principles

such as least privilege and separation of duties (NIST, 1995: pg 109). Application business

goals will determine the applicability of management control principles to the system, for

example by defining those privileges that are needed for the application, and excluding those

that are not. An organization may already have done the analysis and published policies that

apply to assets in a system. The security goal is a statement that the policies and/or principles be

applied where appropriate in the system.

Note that legitimate stakeholders may have conflicting security goals. The set of relevant

security goals may be mutually inconsistent, and inconsistencies will need to be resolved during

the goal analysis process before a set of consistent requirements can be obtained.

 Looking at the goals of attackers could be useful when determining security goals for the

system, for example when enumerating assets or quantifying harm, but we do not consider them

a part, even negated, of the set of security goals. The goals of the system owner and other

legitimate stakeholders are not directly related to the goals of attackers, because security is not a

zero sum game like football. In football, the goals won by an attacker are exactly the goals lost

by the defender. Security is different; there is no exact equivalence between the losses incurred

by the asset owner and the gains of the attacker. To see this, look at two examples:

• Robert Morris unleashed the Internet Worm, causing millions of dollars of damage,

apparently as an experiment without serious malicious intent (Spafford, 1989). The

positive value to the attacker was much less than the loss incurred by the attacked sites.

• Many virus writers today are prepared to expend huge effort in writing a still more

ingenious virus, which may cause little damage (screen message "You've got a Virus").

Chapter 5. A Security Requirements Framework

76

Generally, there is no simple relationship between the gains of a virus writer and the losses

incurred by those who are attacked.

The consequences of security not being a zero sum game are twofold: The first is that the

evaluation of possible harm to an asset can generally be carried out without reference to

particular attackers; one needs only to determine that harm can be incurred. The second is that

the goals of attackers cannot be solely used to arrive at the security goals of a defender to

prevent harm; further consideration is necessary to determine whether and what harm is

incurred if the attacker satisfies his or her goals.

5.3 Definition of Security Requirements

We define security requirements as constraints on the functions of the system, where these

constraints operationalize one or more security goals.

Security requirements operationalize the security goals as follows:

• They are constraints on the system's functional requirements, rather than themselves being

functional requirements.

• They express the system's security goals in operational terms, precise enough to be given

to a designer/architect. Security requirements, like functional requirements, are

prescriptive, providing a specification (behavior in terms of phenomena – see Chapter 2

Section 2.1) to achieve the desired effect.

The fact that security requirements are constraints on functional requirements rather than

separate functional requirements is important for validation of the functional requirements.

Validating a set of functional requirements in the face of constraints is easier than validating

requirements consisting of the original functional requirements and the additional functional

requirements added for security. In the first case, one need check only that after the functions

are constrained, they still do what they originally were intended to do. In the second case, the

system designer decides how the requirements interact and how the interactions are realized.

Only after design is complete can one check to see if functionality has changed beyond

 5.4. From Security Goals to Security Requirements

 77

acceptability. Adding constraints to particular functional requirements (ones where the assets in

question are implicated) keeps interaction analysis a part of requirements engineering.

5.4 From Security Goals to Security Requirements

We propose an iterative hierarchy of security goals and security requirements. The first

iteration produces primary goals and requirements that are derived from the business goals and

functional requirements. These goals and requirements are primary in the sense that if the

resulting system respects the primary security requirements, then the system will satisfy the

primary security goals.

Further iterations produce secondary security goals and requirements. They are added for one

or both of the following reasons: 1) to enable construction of an acceptable satisfaction

argument for the satisfaction of primary security requirements, or 2) to permit an acceptable

feasible realization of the primary security requirements. Satisfaction arguments are discussed

later in this chapter and more fully in Chapter 6.

The term feasible realization takes into consideration technical feasibility, cost/benefit plus

risk, and stakeholder tradeoffs (Redwine, 2006). It may be that there is no practical way to

respect a constraint and thereby prevent the harm; destroying a computer room with an atomic

explosion comes to mind. Perhaps stakeholders do not agree on the goals or requirements. Risk

analysis may indicate that the cost of respecting a security requirement is excessive, in which

case the analyst may decide to detect violation after the fact, and then both recover from and

repair the breach. Availability requirements are a good example - many such requirements do

not prevent loss of availability, but instead imply a recovery capability. For example, secondary

security goals would be added to the system to require that backups be taken and to manage

these backups. Analysis of the secondary security goals may lead to the addition of secondary

security requirements. This is, of course, a recursive process.

Secondary security goals and security requirements are not secondary in terms of importance,

but are instead secondary because they exist to enable satisfaction, to an acceptable level, of the

primary and hierarchically superior secondary security requirements.

Chapter 5. A Security Requirements Framework

78

Secondary security goals can provoke the modification of existing functional requirements,

or the addition of new functional requirements. This will occur when satisfaction of the

secondary security goal requires addition of new management capabilities (e.g., management of

authentication mechanisms), alteration of system-level workflows, or addition of new assets that

the system must accommodate in some way.

It is very important to note that secondary security goals and requirements supersede the

primary security requirements, and can change the context and behavior of the system. For

example, choosing to use attack detection instead of prevention implies that the primary security

requirement will not be completely satisfied, as the attack will not be prevented. The choice

means that the secondary goals and associated security requirements are considered suitably

equivalent to the primary security requirements; they cover and replace (but do not delete) them.

The decision to use detection instead of prevention could also change the behavior of the system

because of the addition of domains and phenomena to facilitate detection.

 5.5. Security Requirements and Context

 79

5.5 Security Requirements and Context

We reiterate that security requirements are applied in the system context, which is larger than

the software. A security requirement can affect many parts of the system, some completely

outside the software to be constructed. A variant of Jackson’s problem frame diagrams

(Jackson, 2001) is used to represent the system context. To refresh the reader’s memory, the

sample problem diagram from Chapter 2, Section 2.1 is reproduced here as Figure 5-1. The

boxes are domains. Lines connecting the boxes represent interfaces, which are labeled with

lower-case letters. The phenomena on the interfaces are listed as a set with the appropriate label.

The domain controlling a given phenomenon is indicated using a letter or letters in front of an

exclamation mark (‘!’).

We chose problem frames to represent the context because problem frames permit us to

incorporate behavior specification of real-world domains at a level of formality ranging from

none to very. The behavior specification is necessary for constructing the satisfaction arguments

we propose. We are not claiming that use of problem frames is necessary. We are not, however,

aware of a better substitute.

Figure 5-1 – Example Problem Diagram

Chapter 5. A Security Requirements Framework

80

5.6 Development Artifacts and Dependencies

All system development processes have recognizable stages that produce artifacts.

5.6.1 Core Artifacts

Core artifacts are successively closer representations of a working system. They are ordered

in the abstraction hierarchy shown in Figure 5-2, progressing from the most abstract to the final

concrete working system. At early stages, core artifacts are typically documents or prototypes.

Management
Control Principle

(Global)

Application
Business Goal

Asset

Goal

Requirement

Constraint

Operationalises

Elicited from

Mandated by

Derived from

Operationalises
primary & secondary

Security goals

Abstract class

Inheritance

Constrains

Dependency

Elicited from

Primary and Secondary
Security Goals

Other Quality
Goals: Reliability,

Usability, etc

Other Quality
Constraints: Reliability,

Usability, etc

Elicited from

Primary and
Secondary Security

Requirements

Constrains

ImplementsImplements

System
Architecture

Implements

Functional Requirement

Security Functional
Requirement

Operationalises secondary security goals

Figure 5-2 – Security Requirements Core Artifacts (Class diagram)

 5.6. Development Artifacts and Dependencies

 81

The final core artifact is the working system itself, consisting of a combination of physical and

software items.

Two sets of core artifacts are of most interest to this thesis. On the mainstream requirements

engineering side, one finds descriptions of goals, requirements, and the system (in the large)

context & architecture. On the security engineering side, one finds assets and control principles.

5.6.2 Support Artifacts

Support artifacts are artifacts that help to develop, analyze, or justify the design of a core

artifact. They may include formal analysis, informal argument, calculation, example or counter-

example, etc. They are by-products of processes, whose aim is to help produce verified and

valid core artifacts.

5.6.3 Dependencies between Artifacts

There are dependencies in the artifact hierarchy. For example, an operationalized requirement

is dependent upon a higher-level goal from which it has been derived, because alteration of the

goal may cause alteration of the requirement. We call this kind of dependency hierarchical

dependency.

There is also a reverse kind of dependency: feasibility. If it proves impossible to implement a

system that sufficiently satisfies a requirements specification, then this will force a change in the

goals or requirements. The higher-level artifact is dependent on the feasibility of the artifacts

below it in the hierarchy.

These dependency relationships have an important implication for the structure of

development processes. If an artifact is dependent upon the implementation of another artifact

for its feasibility, then if the implementation is not feasible, there must be an iteration path in the

process back to the ancestor from its descendant.

Chapter 5. A Security Requirements Framework

82

5.7 Framework Overview

Figure 5-3 shows an ordered set of activities for moving from business goals to security

requirement satisfaction arguments. Boxes in the figure represent activities that produce

artifacts. Typically, a box in the figure has two exits, one for success, and one for failure.

Failure can be one of two kinds. The first failure kind is that it is not feasible to create a

[Not
feasible]

Elicit/Revise Application
Business Goals & Quality Goals

Elicit/Revise
Functional

Requirements

Identify/Revise &
Validate Security Goals

Elicit/Revise Assets

Validate Security Goals
against Assets, Threats

and Business Goals

[Feasible]

[Not
OK]

[OK]

[Not
feasible]

Construct/Revise
Security Requirements

Validate Security
Requirements satisfy

Security Goals

[Feasible]

[OK]

Revise & Verify
System Context

Verify Security
Requirements can be

satisfied by System Context

[Feasible]

[OK]

[Not
OK]

[Not
OK]

[Not feasible]

Security
Validation/Verification

General System Activity

Security Activity
(Construct/Verify)

Determine Secondary
Security Goals

[Not
feasible]

[OK]

If OK branch is
taken, functional

requirements
flow along this line

Select security control
principles (e.g. LPP)

Secondary Security
Goals

Construct
System
Context

[Not
feasible]

[OK]

[OK]

[Not
feasible]

1

3

2

4

Two-part satisfaction
arguments built during

this step

[Not feasible]

Figure 5-3 – Security Requirements Process Overview (Activity Diagram)

 5.7. Framework Overview

 83

consistent set of the artifacts called for by that activity. The second kind is that validation of the

artifacts against a higher level – such as validation that security requirements satisfy security

goals – shows that they fail to meet their aims. For example, one might be unable to construct a

set of validated functional requirements from the business goals. Alternatively, one might fail to

construct adequate security requirement satisfaction arguments. Iteration may cascade upwards

if the problem cannot be resolved at the preceding step.

There are four general stages in the activity diagram. Although one could describe these

stages in terms of the artifacts produced, along with the ordering between them, it is clearer to

describe them in terms of what is the goal of the activities in each stage. The activities are:

• Stage 1: identify functional requirements

• Stage 2: identify/revise security goals

• Stage 3: identify/revise security requirements

• Stage 4: verify that the security requirements can be satisfied by the system, by

constructing satisfaction arguments.

Each stage is discussed in more detail below.

5.7.1 Stage 1: Identify Functional Requirements

The only requirement the framework places upon the development process is that the

engineer produce problem diagrams as described in Chapter 2 Section 2.1. How the

requirements engineer gets to this point is open.

5.7.2 Stage 2: Identify/Revise Security Goals

There are three general steps required to identify the security goals: identify candidate assets,

select the management principles to apply, and then determine the security goals. The result is a

set of security goals, which are validated by ensuring that the business goals remain satisfied.

Chapter 5. A Security Requirements Framework

84

The first iteration through this stage results in the generation of primary security goals.

Subsequent iterations result in secondary security goals, either because of asset analysis or

because they were passed up from a temporally previous step, which are traceable, perhaps

through multiple levels and through security requirements, to the original, primary, security

goal(s).

5.7.2.1 Identify Candidate Assets

The goal of this step is to find all the objects in the system context that might have value,

direct or indirect. In general, assets consist of all the information objects stored in or accessed

by the system and any tangible objects such as the computers themselves. An object has direct

value when the potential harm described in a threat is to the object itself. An object has indirect

value if realizing a threat involving that asset causes harm somewhere else, such as to revenue,

to costs, or to reputation. An object can have both direct and indirect value; when money is

taken from a bank, the bank both loses the money and has its reputation harmed.

One potential asset might contain, or enclose, other potential assets. A good example is a

database that contains individual information assets. Another example is backup media, which

can contain any number of information assets.

5.7.2.2 Select Management Principles

The functions that the system is to provide must be compared to the management principles

that the organization wishes to apply. These principles might include (not intended to be an

exhaustive list):

• separation of duties (NIST, 1995: pg 109) – dividing roles and responsibilities to ensure

that no one person has sufficient privilege to both start and complete important

transactions.

• least privilege (Ibid) – ensuring that a person has only what is required to do his or her job,

in both privilege to know and privilege to do.

 5.7. Framework Overview

 85

• audit trails (ISO/IEC, 1999b: pg 181; NIST, 1995: pg 213) – recording information about

events of potential security interest, such as who did what, when.

• Chinese wall (Brewer & Nash, 1989) –not permitting operations if a potential conflict of

interest exists, such as an analyst giving advice to both company A and competitors of

company A.

The sector the system is being designed for may have standard management principles, such

as no outside network connections, or no removable media capabilities on any computer. In

addition, the organization might have already done a harm/risk analysis and developed

organization-wide security policies for asset types. Which global policies to apply within the

system under consideration must be identified and fed into the next step.

5.7.2.3 Determine/Revise Security Goals

When developing security goals, one should determine whether a harm analysis must be done

for the assets. If the analysis has been done elsewhere (e.g., organization-wide policies) and if

the assets are covered by the policies, then a list of security goals is generated by applying the

management principles to the assets and business goals of the system. The result is a set of

achieve goals with forms similar to “achieve Separation of Duties when paying invoices” or

“audit all uses of account information.”

If the analysis done elsewhere is not considered sufficient, one should do a harm analysis. In

general, harm results from the violation of one or more of the security concerns described in

Section 5.2. For information assets, these concerns are confidentiality, integrity, and

availability. The concerns are similar for tangible assets: exposure, modification, and

deprivation (theft or destruction). These concerns are used to enumerate the threat descriptions.

One asks questions of the form “what harm could come from violating the [insert concern here]

of [insert asset here]?” Answers to these questions are threat descriptions, which are represented

as tuples of the form {action, asset, harm}.

Threats may have a time element, stating that the harm will occur only if the violation occurs

before or after some point, or within some interval. For example, a company’s earnings report is

Chapter 5. A Security Requirements Framework

86

confidential (and therefore valuable) only up to the moment it is made public. The time element

is important when looking for and countering vulnerabilities, as it gives an indication of how

severe a given vulnerability is and what measures are appropriate for countering the

vulnerability.

It is worth noting again that an object might not have any value in itself, but instead is valued

by the harm caused indirectly to something else. For example, information about the amount of

money paid to redecorate the company president’s office has no intrinsic value, but may be

highly valued because exposing the figure could damage the reputation of the company. In other

words, when evaluating threats (how assets are associated with harms), one must look for direct

and indirect effects.

5.7.3 Stage 3: Identify/Revise Security Requirements

Recall that we define security requirements as constraints on functional requirements that are

needed to satisfy applicable security goals. To determine the constraints, we must determine

which security goals apply to which functional requirements, which means we must know

which assets are implicated in fulfilling a particular functional requirement. We use Jackson’s

problem diagrams (Jackson, 2001) for this purpose; these diagrams describe the system context.

We do not attempt to identify a particular problem class, but instead describe domains, their

interconnections, shared phenomena, and requirements into a system problem diagram.

A simple example of a functional requirement decorated with such a constraint is:

The system shall provide Personnel Information only to members of Human

Resources Dept.

The constraint ("only to …") is attached to the function ("provide Personnel

Information"); it makes sense only in the context of the function. One might also impose

temporal constraints:

The system shall provide Personnel Information only during normal office

hours

and complex constraints on traces, for example the Chinese Wall Security Policy, (Brewer &

Nash, 1989):

 5.7. Framework Overview

 87

The system shall provide Personal Information only to any person who has

not previously accessed information about a person in a different

subsidiary.

Availability requirements might need to express constraints on response time:

The system shall provide Personnel Information within 1 hour for 99% of

requests.

Note that this availability requirement differs only in magnitude from a Response Time quality

goal, which might use the same format to require a sub-second response time.

Once a set of security requirements has been developed, one must validate that the security

requirements satisfy the security goals. This would be done using satisfaction arguments

appropriate to the level of formality used to describe the goals. Given that goals are often

written in plain text, the arguments could have a form similar to our inner arguments (see

Section 6.1.2). How these arguments are expressed is left open to the designer of the process to

be used, and not defined within our framework.

In the same fashion as security goals, the first iteration through this stage results in primary

security requirements. Subsequent iterations generate secondary security requirements.

5.7.4 Stage 4: Verify Security Requirements against System Context

It is important to verify that the security requirements are satisfied by the system as described

by the context. We propose the use of formal and structured informal argumentation for this

verification step: to convince a reader that a system can satisfy the security requirements laid

upon it. These arguments, called satisfaction arguments and discussed more completely in

Chapter 6, are in two parts. The first part, the outer argument, consists of a formal argument to

prove a system can satisfy its security requirements, drawing upon claims about the domains in

a system, and assuming the claims are accepted. The second part, the inner argument, consists

of structured informal arguments, supporting the claims made in the formal argument about the

system’s behavior and characteristics. Building on our understanding of security requirements,

the satisfaction arguments assist with identifying security-relevant system properties, and

determining how inconsistent and implausible assumptions about them affect the security of a

system.

Chapter 5. A Security Requirements Framework

88

Stage 4 begins by verifying that the functional requirements, as constrained by the security

requirements, remain satisfied by the system as described by the system context. Once the

functional requirements are shown to be satisfied, the security requirements themselves are

verified by construction of the two-part argument described above. If it proves impossible to

construct valid arguments, the context is revisited. If necessary, secondary security goals are

added to correct problems, and the context is revisited. If this turns out to be infeasible, it is

necessary to return to the beginning, revisiting the business goals. See the next section for

additional details.

5.8 Iteration

One reason that an analyst may fail to construct a convincing satisfaction argument is that

there is not enough information available to justify the claims (trust assumptions) made. For

example, to justify a claim that users are authenticated, there must be some phenomena

exchanged between the user and the rest of the system. The choice of phenomena and behavior

is a design decision that may have a significant impact on the system architecture and context.

For example, it is possible that architectural choices are imposed that extend the context to

include all of IT management. For these reasons, the framework assumes that the process

includes Twin Peaks requirements/design iterations (see Chapter 2 Section 2.3), asking the

designers to add more detail into the system context so that claims can be justified. These

iterations move from stage four to stage one, and from there back through the activities.

The details added during a requirements/design iteration may require new functions to be

added to the system, thus generating new functional requirements. Continuing the authentication

example from above, assume the designers choose a retinal-scanning authentication technique.

The designers add domains and phenomena to the context to describe how authentication takes

place from the point of view of the user (in problem space). However, one cannot necessarily

stop at the addition of phenomena. The authentication system must be managed. New assets

have been added to the system, for example the retina description information. New domains

have been added: for example the administrators and the retinal scanners. New goals have been

 5.8. Iteration

 89

added to the system: assure that the functional additions serve their purpose. These additions

could easily have an impact on system security, precipitating the addition of new security goals,

or changing existing ones.

When the requirements engineer or designer alters the context, they (might) add secondary

security goals to the system to ensure that the preconditions or consequences of the alterations

become part of the requirements for the system. A new requirements and asset analysis must be

performed. Continuing the authentication example, a goal similar to manage authentication

database would be added in stage 4. The process would then restart in stage 1 with a reanalysis

of the context and functional requirements, to understand the consequences of the new goal.

New assets (e.g., the authentication data) would be found in stage 2, and then new security goals

to protect the assets and new security requirements to constrain functional operations wherever

the new asset appears would be added.

Another possibility is that the requirements/design iteration will establish that there is no

feasible way to satisfy the security requirement(s). In this case, the designers and the

stakeholders must come to an agreement on some acceptable alternative, such as a weaker

constraint, attack detection, and/or attack recovery. They would add appropriate secondary

security goals to the system, probably resulting in new secondary security requirements. The

resulting secondary security goals and requirements cover the ones that were not feasible. As

the new secondary goals and requirements are considered suitably equivalent to the originals,

satisfying the new ones is considered to satisfy the originals.

Clearly the ‘secondariness’ of any goals added must be remembered. If the hierarchically

superior (‘more primary’) security requirement is changed, then the secondary security goals

may need changing. For example, if authentication became unnecessary, then the manage

authentication database goal should be removed, with the consequential removal of derived

functional requirements and assets.

Finally, it is possible that no feasible way to satisfy a security requirement exists, and no

agreement can be reached on alternatives. In this case, one must return to the original business

Chapter 5. A Security Requirements Framework

90

and quality goals of the application, modifying the initial conditions to change the assets

implicated in or the security goals of the system. Alternatively, one might decide not to build the

system.

5.9 Worked Example

We use an example of a Personnel Information display system to illustrate the framework.

The example begins in this chapter, working through stages 1 through 3, and then continues

with stage 4 in Chapter 6. We begin by stating the business goals for a simple system. Next, we

present the functional requirements, and then derive the system security requirements by

applying the organization’s security goals to the functional requirements.

Where appropriate, we omit from the discussion processes that are not part of the framework.

5.9.1 Stage 1: Identify Functional Requirements

We begin this example assuming that the work in this stage has already been carried out. The

assumption is that the business goals have been elicited and that there is only one goal:

BG1: Provision of people's personnel information to them.

We further assume that the stakeholders agree that there is one functional requirement:

FR1: On request from a Person (instance of People), the system shall

provide HR data (persData) for a specified payroll number (persNumber) to

that Person.

Figure 5-4 – Initial HR problem diagram

 5.9. Worked Example

 91

Figure 5-4 shows the problem diagram for the requirement and context. There are two

phenomena of interest. The first, U!persNumber, is the user’s request for personnel information.

The second, M!persData, is the information returned by the request.

5.9.2 Stage 2: Identify/Revise Security Goals

Discussion with the stakeholders shows that, ignoring physical assets such as the computers

and the buildings, there is only one asset implicated in the system: persData, an information

asset.

We now list the threat descriptions (action on asset to cause harm). Actions that might

cause harm that can be done to persData are exposure (loss of confidentiality), alteration (loss

of integrity), and denial of service (loss of availability), resulting in various harms. Some

possible threat descriptions are:

Confidentiality threat descriptions:

{unauthorized exposure, persData, expense of privacy violation lawsuit)}

{unauthorized exposure, persData, expense of discontented employee}

Integrity threat descriptions:

{unauthorized alteration, persData, expense of salary underpay lawsuit}

{unauthorized alteration, persData, expense of excess salary}

{unauthorized alteration, persData, expense of information restore}

Availability threat descriptions:

{~available, persData, expense of late salary payments}

{~available, persData, expense of discontented employees}

{~available, persData, expense of unfiled government-mandated reports}

The system owner considers all of these threat descriptions to represent significant risk, and

therefore wishes to avoid them.

The confidentiality threat descriptions give rise to the security goal

SG1: prevent unauthorized exposure of PersData

Likewise, the next integrity threat descriptions give rise to the goal

SG2: prevent unauthorized alteration of PersData,

The availability threat descriptions give rise to

SG3: prevent denial of access to PersData by authorized persons.

Chapter 5. A Security Requirements Framework

92

5.9.3 Stage 3: Identify/Revise Security Requirements

The next step is to derive security requirements from the combination of business goals and

security goals. Recall that security requirements constrain the function called for by a functional

requirement that operationalizes a business goal. Investigating the word authorized in SG1, the

requirements engineer determines that an individual is permitted to see only his or her own data.

Furthermore, assume that the data for a person contains certain statistical information such as

the difference of that person’s salary from the mean salary of the department. It is possible that

this information will expose other employees’ salary because of lack of sufficient statistical

aggregation (e.g. a small department), and therefore the system must not display this

information to the employees. This complexity leads the stakeholders to agree that personnel

information is to be interpreted by a trained HR staff member, and not be exposed directly to the

employee. From these choices and by applying SG1 to FR1, one derives the security requirement

(constraint) SR1: [FR1] only to HR staff. An informal argument that this requirement

satisfies the security goal is: confidentiality of personnel data implies that people in general

cannot be allowed access to this information, but HR staff can be relied upon to maintain its

confidentiality. Therefore, a constraint that permits HR staff, but nobody else, to access it will

satisfy the security goal.

SG2 is less obvious. There is no functional requirement that permits modification of

PersData, so one might assume that there is no functional requirement for SG2 to constrain.

However, FR1 does display information, and clearly one wishes that the information displayed

be an exact analog of the stored information. From this wish, one can formulate the security

requirement SR2: [FR1] only if the displayed information is a correct

representation of stored information.

Applying SG3 to FR1, the (somewhat arbitrary) security requirement SR3 is derived: SR3:

[FR1] within 60 minutes of its request.

 5.10. Chapter Summary

 93

Figure 5-5 shows the problem diagram, modified to show the constraints.

At this point, one should validate that the original business goals are still adequately satisfied

in the face of the security requirements. It is possible that a security requirement is so

constraining that the system no longer meets its business goals. For example, SR1 could have

been the constraint [FR1] only to the Chief Information Officer. This constraint is

arguably so severe that the system would not meet its business goals.

5.10 Chapter Summary

This chapter presented the second of our contributions, our security requirements framework.

The framework incorporates a practical definition of security requirements that have clear

yes/no satisfaction criteria. It also makes the role of system context explicit.

The next chapter completes our explanation of our framework, focusing on Stage 4 –

verification that security requirements can be satisfied by the system. We describe our third

contribution, security satisfaction arguments, then complete the remainder of our example.

Figure 5-5 – Problem with security requirements added

Chapter 5. A Security Requirements Framework

94

 95

Chapter 6. Security Requirement Satisfaction Arguments

As was said in Chapter 5, it is important to verify that the security requirements are satisfied

by the system as described by the context. We use satisfaction arguments for this purpose.

Chapter 4 introduced informal satisfaction arguments based around trust assumptions. This

chapter extends those ideas, proposing the use of formal and structured informal argumentation

for this verification step: to convince a reader that a system can satisfy the security requirements

laid upon it. These satisfaction arguments are in two parts. The first part, the outer argument,

consists of a formal argument to prove a system can satisfy its security requirements, drawing

upon claims about a system, and assuming the claims are accepted. The second part, the inner

argument, consists of structured informal arguments to support the claims made in the first

argument about system behavior and characteristics. Building on our understanding of security

requirements, the two-step satisfaction arguments assist with determining security-relevant

system properties, and how inconsistent and implausible assumptions about them affect the

security of a system.

6.1 Trust Assumptions & Arguments

A security satisfaction argument must satisfy two goals: 1) given a collection of domain

properties and trust assumptions, to show that a system can be secure, and 2) have a uniform

structure for the satisfaction argument so that the effects of trust assumptions are made more

explicit. We satisfy these goals by splitting the satisfaction argument into two parts: a formal

outer argument that is first constructed, and informal structured inner arguments that are

constructed next to support the outer argument. If acceptable inner arguments to support the

outer argument cannot be constructed, then one must reject the outer argument.

Chapter 6. Security Requirement Satisfaction Arguments

96

 Chapter 4 presented trust assumptions, which are claims about the behavior or the type of

domains included in the system, where the claims are made in order to satisfy a security

requirement. These claims represent an analyst’s trust that domains behave as described. Trust

assumptions are in the end the analyst’s opinion, and therefore assumed to be true. At some

point, the inner arguments must stop, depending on these unsupported assumptions. We are now

able to define what trust assumptions are in our framework: unsupported statements about the

behavior of the system, made in order to create a convincing inner argument.

6.1.1 The Outer Argument

The formal outer argument uses claims about the behavior of the system (interplay of

phenomena) to demonstrate that a security requirement (a constraint) is satisfied. The formal

argument is expressed using some logic chosen by the requirements engineer, where the

premises are formed from claims about domain properties and behavior, and the conclusion is

the satisfaction of the security requirement. For simplicity, we use propositional logic in this

chapter, resulting in the outer argument being a proof of the form:

(domain behavior premises) ├─ (security requirement(s))

6.1.2 The Inner Arguments

Inner arguments are informal arguments made to support the claims used in the outer

argument. This thesis proposes a form inspired by the work of Toulmin (1958), one of the

earliest advocates and developers of a structure for informal human reasoning and

argumentation. We chose Toulmin-style arguments for what might be considered an engineering

reason: they are well suited for our purpose because other than requiring that an argument have

a conclusion, they impose restrictions on neither what can be argued nor the logical system to

which the argument must conform. Toulmin arguments facilitate the capture of:

• relationships between domain properties – the premises in the formal argument.

• the trust assumptions that either are, or eventually support, these premises.

• reasons why the argument may not be valid.

 6.1. Trust Assumptions & Arguments

 97

Toulmin et al. (Toulmin, Rieke, & Janik, 1979) describe arguments as consisting of:

1. Claims, the end point of the argument – what one wishes to convince the world of.

2. Grounds, providing any underlying support for the argument, such as evidence, facts,

common knowledge, etc.

3. Warrants, connecting and establishing relevancy between the grounds and the claims. A

warrant explains how the grounds are related to the claim, not the validity of the grounds

themselves.

4. Backing, establishing that the warrants are themselves trustworthy. These are, in effect,

grounds for believing the warrants.

5. Modal qualifiers, establishing within the context of the argument the reliability or strength

of the connections between warrants, grounds, and claims. Modal qualifiers permit the

introduction of rebutting circumstances.

6. Rebuttals, describing what might invalidate any of the grounds, warrants, or backing, thus

invalidating the support for the claim.

Toulmin proposed a diagram for arguments that indicates how the parts fit together (Toulmin,

1958), shown in Figure 6-1. The lines in the figure show ‘movement’ of the argument from left

(grounds) to right (claims). Intersections show where parts of the argument support or detract

from the main line. Warrants support using grounds to justify a claim, but rebuttals weaken the

argument.

Grounds Claim

Rebuttal

Modal
Qualifier

Warrants

Backing

Figure 6-1 – Generic Toulmin-form argument

Chapter 6. Security Requirement Satisfaction Arguments

98

The items in an argument are summarized by Toulmin et al. (1979) as follows: “The claims

involved in real-life arguments are, accordingly, well founded only if sufficient grounds of an

appropriate and relevant kind can be offered in their support. These grounds must be connected

to the claims by reliable, applicable, warrants, which are capable in turn of being justified by

appeal to sufficient backing of the relevant kind. And the entire structure of argument put

together out of these elements must be capable of being recognized as having this or that kind

and degree of certainty or probability as being dependent for its reliability on the absence of

certain particular extraordinary, exceptional, or otherwise rebutting circumstances.”

Newman & Marshall (1991) show that the Toulmin form suffers because the fundamental

recursive nature of the argument is obscured. One may need to argue the grounds, thereby

making them claims; we found this in Chapter 4 when looking at trust assumptions. One may

need to argue the warrants; this is the reason for the existence of the backing, but it is not clear

how the backing differs from grounds in a normal argument. Newman and Marshall propose

several extensions of Toulmin arguments, such as “argument chains” (claims become grounds),

“argument hierarchies” (claims become warrants), “confluence arguments” (the ‘and’ing of

multiple arguments), and “connections by rebuttal” (rebuttals in sub-arguments).

Although these different extensions serve different purposes in an argument, we claim that a

single structure can accommodate all of them. To that end, we propose a unifying scheme that

makes the recursive properties of arguments and the relationships between grounds, warrants,

and claims explicit, while keeping the basic connections between the components that Toulmin

proposed. In our scheme, each of the components of a Toulmin-form argument is either a

proposition (unargued) or a sub-argument (argued). We also include logical connectives in order

to accommodate “confluence arguments”.

This scheme is realized using a simple language to represent the structure of the extended

Toulmin arguments. The language captures the essence of Toulmin arguments while

generalizing recursion and sub-arguments. A textual language was chosen because a) textual

 6.1. Trust Assumptions & Arguments

 99

utterances7 are easier to manipulate automatically than tree diagrams, b) argument graphs are

easily generated from the parser’s abstract syntax tree, and c) a ‘compiler’ can assist in dynamic

browsing of arguments. The syntax of the language is formally defined by the LR(1) grammar

(Aho, Sethi, & Ullman, 1986) shown in Figure 6-2. We will show how the language is used in

the worked example.

Our extensions have the side effect of making the role of trust assumptions within the

argument explicit. Recall that in our argument language, a component of an argument is either a

7 Utterance: a stream of symbols that, when processed by a lexical analyzer, becomes a stream of lexemes that is processed by a

parser to determine if the utterance is valid, as determined by the syntactic (and possibly semantic) rules of the language.

argument : optional_assignments claim '.'
 | argument optional_assignments claim '.' ;

optional_assignments : LET assignments ';'
 | // empty ;

assignments : assignment
 | assignments ',' assignment ;

assignment : IDENTIFIER '=' atom ;

claim : optional_grounds proposition optional_rebuttals;

optional_rebuttals : REBUTTED BY rebuttals_list
 | // empty ;

rebuttals_list : rebuttal
 | rebuttals_list ',' rebuttal ;

rebuttal : proposition
 | proposition MITIGATED BY proposition
 | proposition MITIGATED BY '(' claim ')' ;

optional_grounds : GIVEN GROUNDS grounds_expr optional_warrant THUS CLAIM
 | // empty ;

optional_warrant : WARRANTED BY grounds_expr
 | // empty ;

grounds_expr : grounds_factor
 | grounds_expr AND grounds_factor ;

grounds_factor : grounds_term
 | grounds_factor OR grounds_term ;

grounds_term : grounds
 | NOT grounds ;

grounds : proposition | '(' claim ')' ;

proposition : IDENTIFIER ':' atom
 | IDENTIFIER
 | atom ;

atom : STRING ;

Figure 6-2 – Language Grammar

Chapter 6. Security Requirement Satisfaction Arguments

100

proposition or a sub-argument. In other words, some components are leaf nodes (propositions),

and others are interior nodes. Leaf nodes are trust assumptions.

Applying the notion of leaf nodes to our two-part argument structure, trust assumptions are:

• Premises found in an outer argument that do not appear as a claim on an inner argument.

Such premises are, in effect, unsupported claims about domain behavior, consisting of an

inner argument that consists only of a claim.

• Grounds, warrants, etc., that are found in an inner argument but do not appear as a claim in

some other inner argument.

This definition of trust assumptions fits well with both the discussion in Chapter 4 and the

extended recursive Toulmin argumentation described in this section.

6.2 Worked Example

The example of a Personnel Information display system began in Chapter 5 Section 5.9 is

continued here to illustrate the outer and inner arguments. The work in stages 1 through 3 was

done in Chapter 5, providing us with primary security requirements. We construct the

satisfaction arguments in this chapter. Given the system security requirements, there are design

decisions to be made about where to locate the security functionality and the approach to be

used, and we provide one example of this.

Reviewing the information in Chapter 5, recall that there was one business goal

BG1: Provision of people's personnel information to them.

Initial requirements were elicited and there was only one functional requirement:

FR1: On request from a Person (instance of People), the system shall

display personnel information (PersData) for a specified payroll number

(Payroll#) to that Person.

Three security goals were identified:

SG1: prevent unauthorized exposure of PersData

SG2: prevent unauthorized alteration of PersData,

SG3: prevent denial of access to PersData by authorized persons.

Applying SG1, SG2, and SG3 to FR1 resulted in three security requirements:

 6.2. Worked Example

 101

SR1: Personnel information must be provided only to HR staff.

SR2: displayed information must be a correct representation of stored

information.

SR3: Personnel information must be provided to HR staff within 60 minutes

of its request.

Although three security requirements were derived, considering one of them is sufficient to

explore our ideas. Working through the others would be needlessly repetitive. We choose SR1.

Figure 6-3 shows the initial problem diagram for this application. There are two phenomena

of interest. The first, U!persNumber, is the user’s request for personnel information. The second,

M!persData, is the information returned by the request.

6.2.1 Constructing Satisfaction Arguments

Our goal is to construct a convincing satisfaction argument that a system can satisfy its

security requirements. The reader may note the use of the word “can”, instead of the word

“will”. We use the phrase “can satisfy” because one cannot know if the eventual implementation

will respect the specifications. Nor can one know if the system will introduce unintended

vulnerabilities, which will manifest themselves as phenomena not described in the behavioral

specification but visible in the world; buffer overflows are a prime example.

We begin by constructing an outer argument that proves the claim: HR data is provided only

to HR staff.

Figure 6-3 - Problem diagram for the HR data retrieval application

Chapter 6. Security Requirement Satisfaction Arguments

102

6.2.1.1 The Outer Argument

Starting with the HR problem shown in Figure 6-3, we first attempt to construct a proof that

M!persData occurs only when U!persNumber is input by a member of HR staff, or more

formally that M!persData ├─ (User ∈ HR).

There are two domains in the problem: the domain ‘Users’ and the ‘machine’ (which contains

the data). To construct the argument, the behavior of the system is first described more formally.

We chose a notation based on the causal logic described in (Moffett, Hall, Coombes, &

McDermid, 1996) because a) phenomena in our context diagrams are normally events, handled

well by a causal logic, b) ‘a causes b’ is well understood in requirements engineering, and c)

causal logic introduces temporal properties without introducing the complexity of temporal

modal logic.

Three important points must be made about our behavior specifications:

1. A statement A shall cause D can be expressed as the propositional implication A → D.

The emission of phenomenon A always results in the emission of phenomenon D. We

recognize that such an expression assumes that the temporal properties of shall cause are

not significant, and this assumption is either a trust assumption or must be explicitly

investigated in the inner argument.

2. The behavior specification is assumed to be complete, in that if the behavior specification

consists of exactly A shall cause D, then no phenomenon other than A can cause D, and D

cannot occur spontaneously. In other words, the mutual implication A ↔ D is true.

3. Extending #2 above, if the behavior specification consists of some set of expressions

A shall cause D, B shall cause D, and C shall cause D, then no phenomenon other

than A, B, and C can cause D. Expressed as a mutual implication, this is (A | B | C) ↔ D.

The behavior of the domains in Figure 6-3, expressed in our chosen notation in terms of the

phenomena, is:

U!persNum shall cause M!persData

A major problem is immediately exposed. Given what is seen in the behavior description, there

is no way to connect the system’s behavior to the security requirement, because the type of the

 6.2. Worked Example

 103

domain ‘Users’ is too general. It apparently includes all humans, regardless of whether or not

they are HR staff members, or even employees. The formal argument cannot be constructed. A

requirements/design iteration is required; the system designers must be asked for help.

There are (at least) three design choices:

1. Introduce a physical restriction, e.g., a guard, to change the type of the domain from ‘Users’

to ‘HR staff’. Doing so would permit construction of the following outer argument (proof):

H symbol defined as (User, member of HR because of the guard).

I symbol defined as the occurrence of phenomenon U!persNum

D symbol defined as the occurrence of phenomenon M!persData

1. I ↔ D premise from the behavioral specification

2. I → H premise if input entered, then user ∈ HR (because of guard)

3. D premise assume personal information is displayed

4. D → I split implication from #2

5. I detach 3, 4

6. H conclusion detach 2, 5

2. Introduce phenomena into the system permitting authentication and authorization, thereby

changing the type of the domain from ‘Users’ to ‘HR staff’.

3. Introduce a trust assumption (TA) asserting that the type of the domain is ‘HR staff’, even

though no information is available to support the assertion.

To make the example more interesting, we choose option 2, which requires a

requirements/design iteration. When asked, the designers chose to use an existing password-

based authentication mechanism. The following secondary security goal is added:

SSG1: Users are to be authenticated as HR staff

The requirements engineer returns to the box Construct System Context in stage one of the

activity diagram (see Figure 5-3 in Chapter 5, on page 82). The appropriate domains and

phenomena are added to the context. Passing through the remainder of stage one and then stages

2 and 3 provides us with the following:

• Functional requirements to manage the authentication system must be considered in stage

1. However, as the authentication system already exists, no new functional requirements

need be added.

Chapter 6. Security Requirement Satisfaction Arguments

104

• The information in the authentication system is an asset. However, the same comment as

above still applies: no new goals need be added because the system already exists.

• No secondary security requirements need be added, because SSG1 did not cause any new

assets or other secondary security goals to come into existence.

Figure 6-4 shows the resulting problem diagram that will be used in this second iteration of

stage 4 of the activity diagram. The diagram shows that the user is to supply some sort of

credentials along with the request for information. These credentials are passed to the existing

external authentication and authorization engine, which uses the internal predicate isValid() to

determine if the credentials are for a member of human resources and then answer yes or no. If

the answer is yes, then the machine provides the data, otherwise the request is refused. The

corresponding behavior specification is:

1. U!persNumber(#, userID, credentials)
 shall cause M!validate(UserID, credentials)

2. M!validate(userID, credentials) and isValid(userID, credentials)
 shall cause CS!YES

3. M!validate(userID, credentials) and not isValid(userID, credentials)
 shall cause CS!NO

4. CS!YES shall cause M!persData
5. CS!NO shall cause M!NO

Figure 6-4 – New HR staff problem diagram

 6.2. Worked Example

 105

One can now construct the satisfaction argument for the reformulated problem. One begins

with the outer argument, first defining the symbols to be used. These symbols are shown in the

following table.

Symbol Derived from (see Figure 6-4)
I : InputRequest U!persNumber(#, userID, credentials)
V: CredsPresentedForValidation M!validate(userID, credentials)
Y: ReplyYes CS!YES
D: DisplayInfo M!persData
C: CredsAreValid isValid(userID, credentials)
H: MemberOfHR Conclusion: user is member of HR

We derive the following predicate logic premises from the behavioral specification. These

premises are the grounds used in the formal argument and, if necessary, will be supported by

informal arguments.

Name Premise Description
P1 I → V Behavior specification statement #1
P2 C → H Definition of isValid: if credentials are valid then user is a

member of HR.
P3 Y → (C & V) Behavioral descriptions #2 and #3: a Yes happens only if

credentials are presented for validation, then validated.
Derived from the mutual implication (C & V) ↔ Y that
converts to ((C & V) → Y) & (Y → (C & V))

P4 D → Y Behavior descriptions #4 and #5: display happens only if the
answer from behavior descriptions #2 and #3 was CS!YES

As the requirement is that information be displayed only to a member of HR, D is included as

a premise and H as the conclusion. Thus, one wants to show:
(P1, P2, P3, P4, D ├─ H).

A proof is shown in Figure 6-5.

1 I → V (Premise P1)
2 C → H (Premise P2)
3 Y → C & V (Premise P3)
4 D → Y (Premise P4)
5 D (Premise)
6 Y (Detach (→ elimination), 4, 5)
7 C & V (Detach, 3, 6)
8 V (Split (& elimination), 7)
9 C (Split (& elimination), 7)
10 H (Detach, 2, 9)
11 D → H (Conclusion, 5 leads to 10)

Figure 6-5 – Proof that the security argument is satisfied

Chapter 6. Security Requirement Satisfaction Arguments

106

6.2.1.2 The Inner Arguments

Each of the rules used in the outer argument should be examined critically. We choose

premises P1, P3, & P4 for initial consideration. These premises are probably not controversial,

because one can say that they are part of the specification of the system to be implemented. The

arguments thus consist of one trust assumption, as shown in the following utterance in our

argument language:

let G1 = "system will be correctly implemented";

given grounds G1 thus claim P1.

given grounds G1 thus claim P3.

given grounds G1 thus claim P4.

Premise P2 is more complex. This premise is making the claim that instances of the domain

‘Users’ are limited to be instances of the subtype ‘HR members’, because only HR members

have valid credentials. We show an argument for this claim below. This argument incorporates

three trust assumptions: G2, G3, and G4.

given grounds

 G2: "Valid credentials are given only to HR members"

warranted by

(

 given grounds

 G3: "Credentials are given in person"

 warranted by

 G4: "Credential administrators are honest & reliable"

 thus claim

 C1: "Credential administration is correct"

)

thus claim

 P2: "HR credentials provided --> HR member"

rebutted by

 R1: "HR member is dishonest",

 R2: "social engineering attack succeeds",

 R3: "person keeps credentials when changing depts" .

The three rebuttals in the argument require some treatment. Recall that rebuttals express

conditions under which the argument does not hold. If the rebuttals remain in the argument, they

create implicit trust assumptions saying that the conditions expressed in the rebuttals will not

 6.2. Worked Example

 107

occur, which may be acceptable. Alternatively, one could construct an argument against a

rebuttal. If the stakeholder is unwilling to accept the rebuttals, then the system must somehow

be changed to mitigate them. We examine a mitigation of R1 in the next section.

6.2.2 Removing Rebuttals by Adding Secondary Security Goals

At times, the most straightforward way to remove a rebuttal might be to add functionality to a

system, which is done by adding secondary security goals, then passing back through the

activities to see if new functional requirements are added, as well as new assets and security

requirements. This process would permit adding new grounds or warrants to mitigate the

conditions that permit the rebuttal.

As an example, consider a dishonest HR member selling credentials (an instance of R1). One

could mitigate this risk by increasing the probability that an unusual use of the employee’s

credentials would be detected, thus raising the probability that the misuse would be detected.

This is new functionality.

As already noted, the framework permits addition of new functionality by adding secondary

security goals and then satisfying these goals. In this example, the secondary security goal to

add is

SSG2: ensure that HR members do not sell credentials.

After adding this goal, a requirements/design iteration is required to add sufficient design

information to the context to be able to satisfy this security goal. We pass back to stage 1 in our

activity diagram (see Figure 5-3 in Chapter 5, on page 82) and pass to the step elicit/revise

functional requirements. In this example, one might add two functional requirements to the

system in order to satisfy SSG2:

• FR2: all uses of HR credentials shall be logged

• FR3: any use of HR credentials from a location outside the HR
department shall be immediately signaled by email to the HR director.

As the context does not contain the phenomena required to satisfy these functional

requirements, the context is revisited and appropriate phenomena added.

Chapter 6. Security Requirement Satisfaction Arguments

108

After passing through stages two and three of the activity diagram, these functional

requirements would then be used in stage 4 as grounds in an argument against the rebuttal R1:

given grounds

 G5: "uses of HR creds are logged (see FR2)"

 and

 G6: "uses of HR creds from outside are emailed to HR director (see FR3)"

warranted by

 G7: "these actions increase the probability of detecting improper cred use"

 and

 G8: "the employee does not want to get caught"

thus claim

 C2: "HR members will not sell their credentials".

C2 is added as a mitigating proposition to the rebuttal in argument 1.

R1: "HR member is dishonest" mitigated by C2

The passing through of stages 2 and 3 of the activity diagram needs further discussion. In our

framework, one must ask if the new functional requirements FR2 and FR3 give rise to new assets

and therefore new security goals (stage 2), and whether any existing or new security goals that

are applied to functional requirements gives rise to new security requirements (stage 3). In the

current example, at least one new asset has been created: the access log. One could argue that

the HR director’s email has become an asset, or has at least changed character. Analysis of these

assets would produce threat descriptions (one threat description produced might be {alter,

log data, inability to verify honesty}), which would lead to new secondary security

goals in stage 2, which would lead to new secondary security requirements in stage 3, which

would lead to additional satisfaction arguments. The process continues until an acceptable set of

satisfactory arguments is constructed.

6.3 Chapter Summary

This chapter described our third contribution, the structured formal and informal

argumentation to verify that a system can satisfy its security requirements by being sufficiently

convincing that the system can satisfy the security requirements laid upon it. The formal

 6.3. Chapter Summary

 109

argument is used to prove a system can satisfy its security requirements, drawing upon claims

about a system’s behavior. The informal arguments are used to support the claims made in the

first argument about system behavior and characteristics. These two part satisfaction arguments

provide assurance by combining formal proof with evidence-based argumentation. They assist

with determining security-relevant system properties, and inconsistent or implausible

assumptions about them.

Chapter 6. Security Requirement Satisfaction Arguments

110

 111

Chapter 7. Evaluation

We applied our framework in the “CRISTAL UK” project (Watson, 2006), a research

initiative, managed by NATS (formerly National Air Traffic Services) for the

EUROCONTROL CASCADE Programme. Although safety issues raised by potential use of the

new technology are well understood and are being fully considered by the project, potential

changes in security requirements are less well understood. Therefore, our goals were to gain

experience with the application of our framework to validate its utility, and to discover security

requirements in our chosen problem domain.

The experience was very revealing. For the project, we exposed assumptions and potential

security problems that may need to be considered; determining precisely what actions to take is

a future task for the project and will be based on a risk assessment. As for the framework, our

systematic argumentation exposed hidden assumptions about system behavior that led to

potential security problems. However, we also exposed problems with our framework:

constructing and understanding the formal arguments, representation of the informal arguments,

and determining the size and content of the system context used for analysis.

This chapter is structured as follows. It begins in Section 7.1, with a detailed overview of the

project and the technology. Section 7.2 presents the analysis. Section 7.3 discusses lessons

learned, and Section 7.4 concludes.

7.1 Project Overview

The “CRISTAL UK” project (Watson, 2006) is a research initiative, managed by NATS for

the EUROCONTROL CASCADE Programme in collaboration with Raytheon Systems

Limited, SITA and QinetiQ.

Chapter 7. Evaluation

112

The project is charged with “determining the role of ‘passive surveillance’ in NATS future

surveillance system[s]” (Watson, 2006). It is investigating the potential role of passive

surveillance technologies in air traffic control areas where radar is used currently, such as in and

around the airspace at busy airports.

In the context of this project, passive surveillance means using information broadcast by

aircraft, without any active request or interrogation, to derive surveillance information about the

aircraft, such as its position. This is opposed to active surveillance, which uses transmissions

from a ground system (e.g., radar) to determine the location of an aircraft or to generate a

response from it.

The members of the team have different roles in the project. NATS is responsible for the

CRISTAL UK project and its deliverables. The Open University is not responsible for any

deliverables in the project, but instead has a limited advisory role. Nonetheless, we hope that the

requirements the project developed and, more importantly, the arguments, rebuttals, and

mitigations that our analysis generated, will find their place in the project’s delivered analysis.

7.1.1 Background – Air Traffic Control

Air Traffic Control is responsible for the safe and efficient movement of aircraft through a

given airspace. Unfortunately, ‘safe’ and ‘efficient’ are at odds with each other. An empty

airspace is a safe one – no loss of life or property due to problems with aircraft is possible – but

it is also a very inefficient one. One increases efficiency by adding aircraft into the airspace,

which increases risk that an accident (or an intentional act leading to loss) will occur. Air traffic

controllers try to keep the risk low by maintaining safe horizontal and vertical distances

(separation) between aircraft. To do so, air traffic controllers must know the identity and

position of aircraft with a high degree of accuracy, integrity, and assurance.

7.1.2 Separation

The most important job of an air traffic controller is to maintain a safe separation between

aircraft while ensuring that the aircraft get to where they want to go. The minimum separation

 7.1. Project Overview

 113

between aircraft at a given time is dependent on many factors, including the speed of aircraft,

surveillance accuracy, the ability to communicate with aircraft and between controllers, the

redundancy of surveillance systems, and the ability to spot and rectify mistakes.

Most of the factors are strongly influenced by how often the controller is told where an

aircraft actually is, as opposed to where it is supposed to be. The more often positions are

reported, the more accurate the controller’s picture of the airspace is, assuming that the position

reports are correct. The controller determines aircrafts’ positions using active and passive

surveillance.

7.1.3 Active versus Passive Surveillance

Active surveillance describes a process to determine the position of aircraft independently of

where the aircraft thinks it is. There are two systems in use: primary radar and secondary radar.

Primary radar operates by broadcasting directional pulses and listening for pulses reflected off

aircraft. This system is independent because no help is required from the aircraft to be detected

by the radar. Primary radar can only provide the position of the aircraft. Secondary radar

operates by using highly directional transmissions of enquiries. Aircraft are expected to respond

to the query in a fixed time. The position of the aircraft is determined from the position of the

antenna and the time required to hear a response from an aircraft. The response can (and does)

contain information, such as the aircraft’s identity and its altitude. Where primary radar is

considered independent, secondary radar can be considered to be ‘cooperative’ surveillance.

As secondary radar depends upon the aircraft responding to an enquiry, it will not detect

aircraft that do not respond. Typically, primary and secondary radar antennae are installed

together on the same rotating mount and used together to complement one another. If the

primary radar detects something that is not responding to secondary radar enquiries, the air

traffic controller can take appropriate action.

Passive surveillance consists of equipment that listens for transmissions from aircraft, then

computes the position using that transmission; the surveillance system makes no request of the

aircraft for transmission. There are two general techniques in use:

Chapter 7. Evaluation

114

• The aircraft broadcasts its identity and position information. The surveillance system uses

the information as is.

• The surveillance system uses a network of multiple receivers and multilateration

(intersection of the hyperboloids described by the difference in arrival time of the

transmission at each receiver) to determine the position of the transmitter.

The first technique is known as ADS-B (Automatic Dependent Surveillance – Broadcast). It

uses satellite navigation technology on board the aircraft to determine where the aircraft is, and

then broadcasts that position to other users without the need for any pilot input or radar

interrogation. This technique depends upon the aircraft knowing its accurate position. An

aircraft that either maliciously or through equipment failure reports an incorrect position will be

misplaced; the only sanity check available is to check if a position report makes sense (is

credible). Receiving credible but erroneous information is a key problem to be addressed.

While ADS-B can be used by ground users as a replacement for traditional surveillance

techniques like radar, it is also seen as an enabling technology for new methods of air traffic

control. The broadcast of surveillance data that can be received by all users, including other

aircraft, may permit tasks normally undertaken by a controller to be delegated to the pilot. These

ideas are encompassed in the concept of Airborne Separation Assistance Systems (ASAS)

(Cervo, 2005).

The second technique has similar characteristics to secondary radar; the computation of the

position depends solely upon the timing of receipt of signals.

Neither secondary radar nor one of the passive surveillance techniques can detect aircraft that

are not co-operating.

7.1.4 Increasing Use of Passive Surveillance

The use of passive surveillance has become more attractive to Air Traffic Control Service

Providers (ANSPs) in recent years because aircraft are increasingly being equipped with

suitable avionics. In addition to the perceived operational benefits of these technologies, there

 7.1. Project Overview

 115

are potentially significant cost savings in procurement and through-life maintenance costs of

these technologies over traditional surveillance means.

According to EUROCONTROL, increased use of passive surveillance should bring the

following benefits (list quoted from (Rekkas, 2005)):

• Reduced ground infrastructure cost, resulting in a lower cost base and higher Efficiency.

• Reduced controller and pilot workload, and thus increased productivity achieved by the

introduction of automated support, the reduction of voice communications workload and

the automation of routine aircrew and controller tasks. This will lead to Capacity and

Safety benefits.

• Increased flexibility, achieved by the provision of a new communications medium that

aircrew and controllers can use in combination with existing voice communications. This

is expected to lead to Efficiency and Safety benefits.

• Improved pilot and controller situational awareness and monitoring, achieved by an

increase in the availability and quality of the information (e.g., from aircraft systems). This

will lead to Capacity, Efficiency and Safety benefits.

• More balanced distribution of tasks among pilots and controllers achieved through an

improved task distribution in ATC sectors and the delegation of tasks from the controller

to the pilot. This will lead to Capacity, Efficiency and Safety benefits.

• More balanced distribution of workload between different ATC sectors achieved through

the introduction of new procedures supported by automation that will enable the transfer of

some tasks to adjacent sectors.

The US Federal Aviation Authority has a very similar list (Federal Aviation Administration,

2003). The open question, and the reason for the existence of many projects including

CRISTAL UK, is whether these benefits can be obtained with adequate safety and security.

Chapter 7. Evaluation

116

7.1.5 Using ADS-B to Achieve the Benefits

In order to obtain the majority of the benefits of passive surveillance, there must be aircraft-

based equipment available that reports the required information about the aircraft. The ADS-B

standard and complying equipment will meet this need.

ADS-B-equipped aircraft broadcast information approximately once per second. These

transmissions include information about the position and status of the aircraft. The information

is broadcast in various messages that include airborne position, surface position, aircraft

identification and type, airborne velocity, and aircraft operational status messages (CASA,

2004). This information is collected by ADS-B receivers and then passed to air traffic control

processing systems to be displayed to the controller, either on existing displays (preferred) or on

some new display. The information broadcast by an ADS-B system is derived both from the

avionic systems in the aircraft (e.g., air speed, barometric altitude, aircraft status) and from

satellite navigation equipment (e.g., surface position, geometric altitude, and ground speed).

ADS-B messages are not ‘signed’ in any fashion; one cannot verify that a message actually

comes from the aircraft identified in the contents of the message.

7.2 The Security Requirements Analysis

The project asks whether ADS-B position reports can (or should) be considered to be a

primary position source. We analyzed the security implications of this position using our

framework by stepping through the activities in Figure 5-3 in Chapter 5, on page 82. The

sections below are numbered using iteration.stage, where ‘stage’ comes from Figure 5-3. For

example, the second stage of the first iteration will be numbered 1.2.

7.2.1 The First Iteration

During this first iteration, we established the context for the system, the functional

requirements, and the primary security goals & requirements.

 7.2. The Security Requirements Analysis

 117

Step 1.1 – Identify Functional Requirements.

In this stage of the activity diagram, we identified the business goal(s) of the system under

analysis, described the context, and identified the functional requirement(s). This task was

dramatically simplified because working ADS-B equipment was supplied by project partners

and the initial business goal was given. That business goal was:

BG1: Provide safe and efficient air traffic management.

Given the above goal and project’s remit, the functional requirement can be summarized by:

FR1: Provide positions of aircraft.

The only task remaining was to determine the context, which is shown in Figure 7-1.

Step 1.2 – Identify Security Goals.

This step was charged with determining the assets involved with the system, the harms that

the assets can suffer (directly or indirectly), and finally the security goals to avoid those harms.

The direct assets found from the context are GPS receivers and signals, aircraft, positions of

the aircraft (broadcast), ground receivers, and the ATC system (including the controllers). The

indirect assets are the contents of the aircraft (e.g., passengers), items around the ATC area (e.g.,

buildings, infrastructure, potentially the airport), and the aircraft owner’s business (e.g.,

reputation, profitability, etc.).

Figure 7-1 – System context – Iteration one

Chapter 7. Evaluation

118

Using this list of assets, we can (with the help of the project’s domain experts) determine the

harms involved in the system, and then the threat descriptions expressed as violation of general

security goal on asset can cause harm. The threat descriptions are:

General goal: confidentiality:
T1: {publicizing, airplanes’ position, facilitating attack in air}

T2: {publicizing, airplanes’ position, loss of trade secrets}

The stakeholders made the decision that threats T1 & T2 are outside of the project’s remit.

General goal: integrity

T3: {~correct, airplanes’ position, lost property due to collision or

 crash}

T4: {~correct, airplanes’ position, lost revenue due to increased

 separation}

T5: {~correct, airplanes’ position, lost revenue due to lost confidence}

General goal: availability

T6: {~available, airplanes’ position, lost property due to

 collision/crash}

T7: {~available, airplanes’ position, lost revenue due to increased

 separation}

T8: {~available, airplanes’ position, lost revenue due to lost

 confidence}

The security goals are determined by avoiding the action in the threat descriptions. Given these

threat descriptions, the security goals are:

SG1: Have correct positions (avoids T3, T4, and T5)

SG2: Report positions on a timely basis (avoids T6, T7, T8)

Step 1.3 – Identify Security Requirements.

In this step, we determined the constraints to place on the functional requirement FR1:

Provide positions of airplanes. We did this by composing the security goals and the

functional requirement, resulting in a constrained functional requirement.

The composition produces two security requirements (constraints). The first is

 SR1 [FR1: Provide positions of aircraft]: positions shall be accurate.

 7.2. The Security Requirements Analysis

 119

The NATS requirement for accuracy is that the aircraft be within 300 meters of its reported

position when the position is received. However, ADS-B can potentially improve on that by an

order of magnitude, and the consequences of this must be studied. SR1 operationalizes SG1.

The second constraint is

 SR2 [FR1: Provide positions of airplanes]: positions shall be timely.

The NATS requirement for timeliness is that a new position be received within 4 to 6 seconds of

the last position report, or of the aircraft entering controlled airspace. SR2 operationalizes SG2.

Figure 7-2 shows the context with the constraints.

An informal satisfaction argument that SR1 and SR2 satisfy SG1 and SG2 is as follows: the

goal SG1 is satisfied because accurate positions are available when needed (SR1 and SR2); and

SG2 is satisfied directly by SR2.

Step 1.4 – Satisfaction Arguments

We began by constructing the formal outer argument. The steps are 1) annotate the context

with the phenomena exchanged between domains, 2) develop a behavioral specification for the

system in terms of the phenomena, and then 3) use the phenomena and behavioral specification

in a proof that if they are complete, the system can satisfy the security requirements.

Figure 7-2 - Context with constrained requirement

Chapter 7. Evaluation

120

The Phenomena

Figure 7-2 shows the phenomena exchanged within the system and used in the behavior

specification. The naming convention is “sending domain!message”. The phenomena are:

AP!RECV: The airplane receives GPS broadcasts.

AP!XMIT: The airplane transmits its position.

R!SEND: The receiver sends the received position to the machine.

M!POSREPORT: The machine sends the position to the ATC system.

ATC!HASPOS: The ATC confirms that it has the aircraft’s position.

The Behavior Specification

 The behavioral specification is built using the variant of the causal logic described in

Chapter 6 Section 6.2.1. For this project’s ATC system, the behavioral specification is:

AP!RECV shall cause AP!XMIT

AP!XMIT shall cause R!SEND

R!SEND shall cause M!POSREPORT

M!POSREPORT shall cause ATC!HASPOS

We recognized that reception of GPS signals by the aircraft will not actually cause the aircraft to

transmit position reports, but instead enables them. We chose to accept this slight misstatement

instead of adding a clock to the context and changing to a temporal logic. As a consequence,

AP!RECV shall cause AP!XMIT embeds the assumption that it repeats often enough to satisfy

the NATS requirement. We also assumed that each processing step in the system will complete

in an appropriate amount of time, again to avoid changing to a temporal logic.

The Outer (Formal) Argument

There was now enough information to construct the outer argument, a proof that the system

can respect the security requirements. We want to prove that

 AP!RECV ├─ ATC!HASPOS

If we can prove this, then we have proved that the system can satisfy both SR1 (accuracy) and

SR2 (timeliness), given the following assumptions: 1) the context is correct and the

implementation introduces no conflicting behavior, and 2) the temporal properties assumed

 7.2. The Security Requirements Analysis

 121

above are not significant. Some of these assumptions will be challenged when we build the

inner arguments.

A proof is shown in Figure 7-3.

The Inner Arguments

The premises and assumptions of the outer argument comprise a set of assumptions that must

hold for the system to be secure. The purpose of the inner arguments is to challenge these

assumptions in order to establish whether they hold in the real world. In our case, steps 1

through 5 in Figure 7-3 are the assumptions to be challenged.

As explained in Chapter 6 Section 6.1.2, we chose to represent arguments in our framework

in a text form because this form handles complex grounds-to-claim graphs and recursion in the

arguments more naturally. The argument for the initial premise AP!RECV AP!XMIT in this

form is:

given grounds

Received GPS positions are accurate (AP!RECV & assumptions)

warranted by

 Calculations are accurate (assumption)

thus claim

 Airplanes transmit accurate positions (AP!XMIT)

[rebutted by ...]

1. AP!RECV AP!XMIT (premise)

2. AP!XMIT R!SEND (premise)

3. R!SEND M!POSREPORT (premise)

4. M!POSREPORT ATC!HASPOS (premise)

5. AP!RECV (assumption)

6. AP!XMIT (Detach, 1, 5)

7. R!SEND (Detach, 2, 6)

8. M!POSREPORT (Detach, 3, 7)

9. ATC!HASPOS (Detach, 4, 8)

Figure 7-3 - The outer argument (proof)

Chapter 7. Evaluation

122

One of our first lessons learned was

that although it is easy to understand

the text representation of an argument

when the argument is simple,

understanding by project members

became more difficult as the

arguments become more complex. As

such, we changed to a modified form of the argument diagrams Toulmin proposed. Figure 7-4

shows the argument in this form, along with the newly added rebuttals. The text in parentheses

(e.g., SR2) is the security

requirement that is violated if the

rebuttal is true. Figure 7-5 through

Figure 7-8 show the arguments for

premises 2 through 4 (numbers of the

lines in the proof), and for the

assumption (line 5).

There are 12 rebuttals in the

arguments. These rebuttals fall into

three general categories: sabotage

where equipment is sabotaged to

break it (R1.1, R1.2, R1.4, and R1.6

through R1.11), externally caused

denial of service (R1.5 and R1.12),

and the intentional transmission of

incorrect data (R1.3). Each of these

rebuttals should be evaluated to

determine whether it should be

Received
GPS

positions are
accurate

Calculations
are accurate

Grounds

Warrants

Accurate
positions are
transmitted

Claim

R1.1: Airplane’s GPS sabotaged. (SR2)Rebuttals
R1.2: ADS-B Transmitter sabotaged. (SR2)

R1.3: Aircrew xmits wrong pos/ID. (SR1)
Figure 7-4 - Argument for AP!RECV AP!XMIT

ADS-B
transmission
are received

Positions are
sent to M

R1.4: Receiver is sabotaged. (SR2)

R1.5: Transmissions are jammed. (SR2)
Figure 7-5 - Argument for AP!XMIT R!SEND

Rcvr sends

accurate
position to
Machine

Positions sent
to ATC

R1.6: Rcvr sabotaged – pos. wrong. (SR1)

R1.7: Network sabotaged – no xmit. (SR2)

R1.8: Machine sabotaged – no send. (SR2)
Figure 7-6 - Argument for R!SEND M!POSREPORT

Machine

sends
accurate pos.

to ATC

Position
receipt

confirmed

R1.9: M sabotaged – pos. wrong. (SR1)

R1.10: Network sabotaged – no xmit (SR2)

R1.11: ATC sabotaged – no display. (SR2)
Figure 7-7 – Argument for M!POSREPORT ATC!HASPOS

GPS

satellites are
operational

Aircraft
receives GPS

signals

R1.12: GPS jammed. (SR2)
Figure 7-8 - Argument for AP!RECV

 7.2. The Security Requirements Analysis

 123

mitigated, and if so how. If a rebuttal is to be mitigated, then iteration is required. The project

assumed that R1.3 presented an unacceptable risk of terrorism; aircraft believed to be following

some track X but really going somewhere else could do a great deal of damage.

Note that rebuttals that are safety concerns are not considered here. For example, the

equivalent of ‘jamming’ can be caused by natural phenomena such as multipath and electrical

interference. We consider these to be naturally occurring behavior, and therefore to be

considered during a safety analysis.

7.2.2 The Second Iteration

In order to mitigate R1.3, we needed to find a way to know that the position an aircraft

transmits is the true position of the aircraft. We were less concerned with detecting that an

aircraft transmitting a correct position is using the wrong identity.

Multilateration can be used to determine the position of a transmitter, computing the position

by measuring the difference in a transmission’s arrival time at multiple receivers. We chose this

approach, and changed the context appropriately. The new context is shown in Figure 7-9.

Stepping through the framework, we see that we do not have any new functional

requirements (we put aside administration of the multilateration system). We do have new

assets, the multilateration computers, but they did not add any new security goals in the context

of this project. As such, our security requirements did not change.

C

ATC
System

C

ADS_B
Receiver

B

Airplanes
w/ADS-B

Provide positions of airplanes
- positions must be accurate
- positions must be timely

positions

Transmitted ATS-B
messages

Positions when
needed

C

GPS
C

Multilat
Computer

C

Time
Source

Position with
reception time

Machine

Figure 7-9 – Context diagram, iteration two

Chapter 7. Evaluation

124

The behavior specification does have a significant change. We must describe the behavior of

the new component in the context. The behavior specification is now:

AP!RECV shall cause AP!XMIT

AP!XMIT shall cause R!SEND

R!SEND shall cause MC!SEND

MC!XMIT shall cause M!POSREPORT

M!POSREPORT shall cause ATC!HASPOS

We now have a new premise in our proof, corresponding to the new component of the behavior

specification.

We learned another lesson at this point. It was easier to describe the effects of the iteration

using a graphical ‘sub-argument’ technique, rather than expressing the arguments again. This

technique applies the mitigation directly to the rebuttal in the argument developed during the

first iteration. We used that technique here. Figure 7-10 shows the resulting argument and

mitigation. The figure also shows the next set of rebuttals, described in the next paragraph.

The first rebuttal (R2.1.1) challenges the assumption that the transmitter is actually in the

airplane it says it is in, or is even in an airplane. One could have a small airplane accompanying

a large one. The small plane broadcasts the position, which would permit the large airplane to

divert. Alternatively, one could have a series of transmitters in cars, pretending to be the

airplane. The second rebuttal (R2.1.2) challenges the assumption that there is a transmitter

where multilateration says it is. It is possible to use multiple transmitters and vary the timing to

Received
GPS

positions are
accurate

Calculations
are accurate

Accurate
positions are
transmitted

R1.1: Airplane’s GPS sabotaged. (SR2)
R1.2: ADS-B Transmitter sabotaged. (SR2)
R1.3: Aircrew xmits wrong pos/ID. (SR1)

M2.1: Verify pos using multilateration

R2.1.1: Source good for bad position

R2.1.2: Timing good for bad position

R2.1.3: Incorrect position computed
Figure 7-10 – Arguments for the second iteration

 7.3. Lessons Learned

 125

create ‘virtual transmitters’ at any position (Capkun & Hubaux, 2004). The third rebuttal

(R2.1.3) challenges the assumption that the clocks in the receivers are synchronized. It is

possible to perturb the clock at particular receivers, which would cause the position calculation

to be offset. More detail on this rebuttal would require looking at specific multilateration time

synchronization solutions.

7.2.3 The Third Iteration

A third iteration would be required to deal with rebuttals R2.1.*, assuming that the risks are

determined significant, which at first glance they appear to be. For example, primary radar

mitigates all of them, because it gives a reliable indication that something really is at the

position reported, and that there is not something elsewhere. R2.1.2 could possibly be mitigated

by using antennae that provide an approximation of the ‘angle off of horizontal’ of a

transmission. R2.1.3 can be mitigated by use of a secure clock synchronization technology.

7.3 Lessons Learned

This experience taught us several things about using our framework in a real project setting.

The outer (formal) arguments were difficult to construct and explain. One problem was the

nature of the proof. The outer argument proves that if the assumptions are valid, if the behavior

specification is correct, and if there are no other behaviors, then the system can be secure. It

does not prove that a system will be secure. Given these distinctions, some people did not see

their utility and wanted to skip directly to the inner arguments. However, in our framework it is

the outer arguments that provide the assumptions that the inner arguments test, so skipping this

step was not appropriate. We need to find a better way to motivate, capture, and represent the

outer arguments.

It is worth noting that the need to test the assumptions flowing from the outer arguments (the

premises) did not present a problem. People seemed to enjoy constructing the inner arguments.

Chapter 7. Evaluation

126

The project members were happier using a graphical representation of the inner

arguments, even though the representation had less expressive power than text representation.

This, plus the desire to bypass the outer arguments, led to us using the rebuttal, mitigation,

rebuttal graphical argument form. Unfortunately, there are many arguments that would not be

easy to express completely in this form, such as when a mitigation requires a warrant or covers

several rebuttals. Tool support for converting between the text and graphical forms and for

graphically rendering summary arguments would be very helpful.

Domain knowledge is certainly required, but can sometimes lead people not to question

assumptions. We found that it was easy for domain experts implicitly to assume that something

behaves in manner X because that is how it has always done. We found that having domain non-

experts in a project helped; it seemed that someone from outside was more likely to ask “why is

that?” at odd times. It should be noted that once the questions were asked, we had no problem

having lively and productive discussions.

Security problems expand the system context in unexpected ways. For example, the

buildings in a city are (usually) not considered part of an ATC problem until considering

whether someone will decide to fly into one. Neither are the GPS satellite signals, until GPS

jammers are considered. The challenge we faced was to expand the context as much as

necessary, but no more so than that.

Iteration is required, especially when considering mitigations. However, iteration requires

careful management to ensure that interactions are detected. The choice to represent mitigations

in the context of their rebuttals led naturally to considering them one at a time, when in fact they

should be considered together as part of a complete analysis. For example, it makes sense to

consider all the jamming scenarios together (e.g., ADS-B jamming, clock sync jamming, GPS

jamming), instead of considering them independently.

 7.4. Conclusions

 127

7.4 Conclusions

We had two goals for the project: to gain experience with the application of our framework to

validate its utility, and to discover security requirements in our chosen problem domain. As we

used the framework to produce security requirements, rebuttals, and mitigations that had not

previously been considered, we consider that we succeeded with both goals.

Two particular future work items deserve mention. The project showed the need for more

tool support for representing outer arguments, and we are adding this task to our near-term

future work list. The effort also showed the need for work on better enabling construction and

understanding of the outer (formal) arguments by people who do not normally use formality,

which is a longer-term research question.

Chapter 7. Evaluation

128

 129

Chapter 8. Discussion & Future Work

We presented three contributions in this thesis. Recapitulating from Chapter 1, the first is a

security requirements framework incorporating a coherent definition of what security

requirements are and an explicit recognition of the importance of context: the world within

which the system and the potential attackers exist. The second is trust assumptions, making

their role in security requirements explicit. The third is two-part satisfaction arguments for

validating whether the system can satisfy the security requirements, incorporating a formal part

to establish what premises are key for security, and an informal part to challenge the premises

and the trust assumptions that support them. These contributions work together to support

security requirements engineering where a) asset and security goal analysis are done in the

business context of the system, b) the effects of security requirements on the functional

requirements are understood, c) design constraints are taken into account, and d) the satisfaction

of security requirements is established through the use of arguments. The usefulness of the

contributions has been validated through constructed examples, an industrial case study, and

peer review.

Of course, questions and challenges have been raised during the research, and more work

remains to be done. Some challenges are described in Section 8.1. Section 8.2 discusses future

work, and this thesis concludes with Section 8.3.

Chapter 8. Discussion & Future Work

130

8.1 Questions & Challenges

Several challenging questions were raised during our research.

8.1.1 Problem vs. Solution Space

A reasonable objection to the framework described in this thesis is that one is designing the

system in order to determine its requirements. To some extent, this is true; the details of the

system and its domains are being refined iteratively.

However, although it is true that the system and system context are being determined, the

software design is not. What is being specified are the inputs and outputs (the phenomena) that

the software will see and produce. By iterating between requirements and design, the

environment (or context) that the software lives within is being refined to include additional

domains that need to exist, and additional phenomena required to make use of these domains.

8.1.2 Traceability of Secondary Security Functional Requirements

Adding functionality to support security requirements creates a traceability problem. This

issue was raised during the discussion of SeDAn in Chapter 3 Section 3.1.3. Chapter 6 provided

two examples where this sort of functionality was added: addition of credential verification to

permit the outer argument to be constructed, and addition of monitoring and logging

functionality to support removal of the dishonest employee rebuttal. Chapter 7 provided another,

the addition of multilateration. Although potentially one could trace back through the recursion

in the process to connect the functions and the security requirement they support, it would be

best if these functions remained strongly connected because the need for these functions could

change or disappear if the security requirement changes. Currently, no mechanisms for

maintaining such traceability are provided in the framework, beyond tracing mitigations to their

rebuttals. Such mechanisms would be part of any eventual tool support.

 8.1. Questions & Challenges

 131

8.1.3 Representing all Security Requirements as Constraints

Representing some security requirements as constraints can feel awkward. For example,

consider the following security management principle

Encryption shall be of the highest quality available.

Adding the above as a constraint on every functional requirement could be problematic, because

many of the functions do not have any obvious relationship to encryption. The constraint would

appear as a restriction on who is allowed to view/access the information being encrypted, but

this is one level removed from the principle.

Our position is that if a general security principle similar to the one presented above is to

have any effect on the behavior of the system, it will appear either as a security requirement (a

direct constraint) or as a trust assumption in an argument. For example, if the context includes a

wireless LAN and there is an access constraint on the function, then the outer argument (proof)

must include a premise stating that information on the LAN cannot be viewed/altered by

unauthorized parties or, more probably, is viewable only by authorized parties. This premise

could be supported by an inner argument referring to the quality of the encryption, thereby

indirectly constraining the problem to satisfy the encryption goal.

8.1.4 Representing Required Behavior as Constraints

In many cases, constraints describe what a system must do, as opposed to what a system must

not do. Although these cases are indeed constraints in the sense that they limit the choices

available to the requirements engineer and architects, the terminology feels backwards to users.

8.1.5 Consistency of Trust Assumptions

One trust assumption should be consistent with (should not conflict with) another trust

assumption. Given that by definition trust assumptions are not argued (if they are, they become

claims), there is no mechanism in place to help assure this consistency.

Chapter 8. Discussion & Future Work

132

A similar problem exists with respect to arguments. Nothing in the framework verifies that

two arguments are consistent with each other, or that one argument depends on some trust

assumption T, and some other argument depends on not T.

Resolving these issues involves solving some difficult issues. See Section 8.2.1 for more

detail.

8.1.6 Trust Assumptions - Creation of Obligations

Trust assumptions create what might be thought of as obligations on the domains to which

the assumptions are attached. The domains are expected to perform as trusted, or to

‘competently, honestly, and dependably’ conform to the trust assumption. One can say that

domains are expected to discharge these obligations. This implies a stronger connection

between domains and trust assumptions in inner arguments than currently exists in the

framework.

On the other hand, the idea that domains have obligations might lead to high-level

(requirements) aspects. If multiple domains must discharge the same obligation, then there is

crosscutting. This idea needs further exploring.

8.1.7 Risk Analysis

The framework as described in this thesis assumes a binary level of confidence in trust

assumptions, leading to a binary level of confidence in arguments that use the trust assumptions.

The framework, and especially the arguments, should incorporate non binary-valued risk

analysis. There are three principle points in the framework where finer-grained risk should be

considered.

• Trust assumptions: trust assumptions should carry a level of confidence that the trust

assumption will hold true.

• Threat analysis: one should have an idea of the impact and likelihood of the realization of a

threat, in order to ascertain whether mitigating the threat is worth the cost.

 8.1. Questions & Challenges

 133

• Arguments: The levels of confidence of trust assumptions used in an argument should

aggregate somehow, resulting in a level of confidence for the argument. The level of

confidence in an argument should take into account the implicit trust assumption that all

rebuttals have been considered. This level of confidence must next be converted to the

likelihood that a vulnerability exists that permits a threat to be realized.

8.1.8 Satisfaction Arguments – Constructing Outer Arguments

One issue in our framework is that the outer arguments (the formal proofs) are constructed in

an ad hoc manner. This creates a barrier to general acceptance of the framework. As we noted in

Chapter 7 Section 7.2, the outer arguments are difficult to construct and explain. More research

is needed on proof construction aids, perhaps built directly from a behavior and phenomena

specifications. We should also explore the issues and challenges of using a temporal logic for

behavior specification, so that we could use some of the verification tools available for these

logics.

8.1.9 Satisfaction Arguments – Constructing Inner Arguments

One question that arises is “how does the analyst find rebuttals, grounds, and warrants?”

Unfortunately, we have no recipe, but a method inspired by the how/why questions used in

goal-oriented requirements engineering methods such as KAOS ((van Lamsweerde, 2001) and

many others) suggests itself. Given a claim, the analyst asks ‘why is this claim true?’ and ‘what

happens if it is not true?’ The analyst first chooses which claim is being argued, and then uses

the ‘why’ question to gather the grounds that are pertinent to the claim along with the warrants

that connect the grounds to the claim. The argument is then constructed.

The analyst next asks the question “what can prevent this claim from being true?” The

answers are the initial rebuttals. Some of these rebuttals will be challenges of the grounds or

warrants; these create the need for sub-arguments where the challenged item is a claim. In other

cases, the rebuttal will not be addressed, thereby creating an implicit trust assumption stating

Chapter 8. Discussion & Future Work

134

that the event(s) described in the rebuttal are not to be considered. A third possibility is to add

new grounds to the argument that remove the conditions assumed by the rebuttal.

Referring again to Chapter 7 Section 7.2, the enthusiasm showed by people while

constructing the arguments arguably mitigates the lack of a recipe. People enjoyed looking for

ways to break assumptions. Although there is little evidence beyond impression and anecdote, it

may be that the competitive aspect of finding rebuttals is a strength of our framework.

8.1.10 Other Satisfaction Arguments in the Framework

This thesis proposes satisfaction arguments for verifying that the security requirements can

be satisfied by the system. There are two other security-related satisfaction arguments that could

fit in the framework. The first is that the goals are complete and consistent; if all the goals are

satisfied, then no harm can come through abuse of assets. The second is that the security

requirements are complete and consistent; the set of security requirements has satisfied the set

of security goals. One could also imagine an argument that the asset analysis is complete. This

thesis does not address these other arguments.

8.2 Future Work

This section presents ideas for future research suggested by the work described in this thesis

8.2.1 The Inner Argument

One question that begs for attention is whether, and if so how, to formalize the inner

arguments. If inner arguments are formalized, one can imagine tool support to validate the

arguments, or perhaps even to generate proofs for them. However, before we continue we must

determine what kinds of formal arguments are appropriate in our context.

Fetzer, discussing the shortcomings of formal verification (1988), describes two different

forms of argument: inductive and deductive. He characterizes them as follows (Ibid: pg 1051):

 8.2. Future Work

 135

“The features that distinguish (good) deductive arguments are the following:

(a) they are demonstrative, i.e., if their premises were true, their conclusions could not be

false (without contradiction);

(b) they are non-ampliative, i.e., there is no information or content in their conclusions that

is not already contained in their premises; and,

(c) they are additive, i.e., the addition of further information in the form of additional

premises can neither strengthen nor weaken these arguments, which are already

maximally strong.”

He next says that inductive arguments are non-demonstrative, ampliative, and non-additive.

“Inductive arguments are meant to be knowledge-expanding, while deductive arguments are

meant to be truth-preserving.” In other words, deductive arguments prove something about the

world, and inductive arguments draw inferences about the world. Using these distinctions, he

argues that deductive arguments can be used on algorithms, but not on programs.

Fetzer’s distinction between algorithms and programs (1988) is very relevant to security.

Algorithms are intellectual entities, and therefore can be verified using deduction because the

messiness of the world is excluded from the model. Programs run in messy environments, what

Fetzer calls causal environments, and therefore formal verification using deduction is dubious

because the model does not include all possible behavior. He argues that inductive arguments do

work in the causal environments because inductive arguments permit the conclusion to be false

even if the premises are all true8. Inductive argumentation provides a structure, but does not

place constraints on the world. This conclusion is significant when thinking about security,

because one strategy used by attackers is to violate some assumption about the world, causing

the system to do something outside what is intended. Consider using a deontic logic

(McNamara, 2006) for the inner arguments, modeling arguments based on permission and

8 Having a false conclusion in the face of true premises can happen if an ampliative step becomes invalid through addition of

another true premise. Consider the following example: 300 people queried said A, therefore most people say A. This argument can

be contradicted by adding the premise ‘no other people in the world will say A’, which does not contradict the first premise but does

make the conclusion false.

Chapter 8. Discussion & Future Work

136

obligation. The difficulty is that permission and obligation in the real world are fuzzy. What is

permission, exactly? How is permission granted, when, and to whom? Are individuals who are

indistinguishable by the system (e.g., use identical credentials) the same individuals with the

same permissions? There is nothing in the world that forces an individual to fulfill an obligation,

so what does ‘obligation’ in the model mean? Similar points can be made about epistemic logic

(Hendricks & Symons, 2006), modeling belief and knowledge. For example, what does ‘knows’

mean in the face of overhearing a dinner conversation or discovery of secrets through

insufficient statistical aggregation (see Section 5.9.3)? We conclude from Fetzer’s reasoning

that a formalization of our inner arguments must be a formalization of the argument, and not a

formalization of the world itself.

Our conclusion is further strengthened by Gödel’s incompleteness theorem, which states

loosely that “any consistent formal system must be incomplete” (MacKenzie, 2001: pg 90).

Gödel showed that in such a system S, there will be some theorem A that is known to be true

but cannot be proved true. The existence of A can permit paradox. In other words, the world is

larger than the world described by the logical system. The real world is the largest of all.

Research and more experience are required to determine how to formalize an argumentation

system for the inner arguments. Argumentation systems being developed by the AI community

for use in law (e.g., (Bench-Capon & Prakken, 2005; Bench-Capon & Staniford, 1995; Gordon,

1993)) could be useful. The work in truth management systems (e.g., (de Kleer, 1986) and

follow-ons) could also be useful. We have been asked whether our arguments would constitute

due diligence in the same way that a safety argument does. This question has both technical and

legal implications, both of which we are interested in exploring. Although the details of the

arguments themselves are not directly relevant, the framework used in Bandara et al.’s work on

security argumentation for firewalls should be further investigated (Bandara, Kakas, Lupu, &

Russo, 2006).

Hunter’s work on argument representation and consistency is very germane (e.g., Hunter,

2004, 2005). In particular, the techniques for tolerating inconsistency of the knowledge base,

and the incorporation of belief and relevance into a formal structure, are very interesting.

 8.2. Future Work

 137

We also wish to explore tools for representing our Toulmin arguments, or something close to

them. Tools like Compendium (Compendium Institute, 2005) and Araucaria (Reed, 2005) hold

promise, albeit for different reasons. Compendium is designed to capture arguments, while

Araucaria is designed to represent and check their syntactic consistency.

8.2.2 Other Future Work

Correcting or improving upon the questions & challenges raised in Section 8.1 is one source

of future work. For example, the issue of consistency of trust assumptions and arguments could

be addressed by using a representation for trust assumptions in which the vocabulary and

semantics are specified. The difficulty will be expressiveness and, of course, the issues raised in

Section 8.2.1. In addition, tool support for tracing the use of trust assumptions and propagating

confidence would be helpful.

The aspect-oriented requirements engineering (AORE) area (e.g., Rashid, Sawyer et al.,

2002; Rashid, Moreira et al., 2003) offers many possibilities to investigate. One area to look at

is whether security requirements (constraints) are usefully mapped into design aspects, which

should be possible if there is traceability from the functional requirements into the design.

Another would be to examine whether trust assumptions exhibit aspect-like crosscutting

properties, and if so whether these properties could be used for cross-system risk analysis.

We want to investigate incorporating a risk analysis framework such as CORAS (2005) into

our security requirements framework. Doing so would help capture rationale for why certain

secondary requirements can be considered suitably equivalent to the original primary

requirements. In addition, CORAS has tool support that should be useful.

One area that should prove fruitful is connecting our security requirements with one of the

security-related UML variants. Doing so should help propagate some benefits of design model

checking up into the functional and asset analysis stages. Equally useful, the asset analysis in

the framework should help inform the development of the model. Some preliminary work has

been done related to integrating the framework with UMLSec (Jürjens, 2005); the possibilities

seem promising.

Chapter 8. Discussion & Future Work

138

We want to develop aids for constructing the outer arguments, but it is not at all obvious how

best to accomplish this. One idea we want to pursue includes developing a model for the

behavior specifications that would permit checking the validity of the behavior, an idea related

to the incorporation of UML possibility described earlier. In this case, trust assumptions would

become assertions in the model. Other ideas that may or may not lead somewhere include proof

templates, tools that guide construction of a proof by asking questions about behavior, and

exploring the derivation of the outer (formal) arguments using a pseudo natural language.

Some other future work opportunities are:

• Tool support for managing the artifacts generated while using the framework, and in

particular the traceability between them.

• Tools that can convert between the more powerful text representation and the more

intuitive graphical representation.

• Incorporation of trust assumptions and argumentation into other requirements frameworks,

for example i* & KAOS.

• Further use of the framework in industrial settings.

8.3 Conclusion

This thesis has presented our three contributions, and has shown how these contributions

work together to improve capture and analysis of security requirements. To reiterate, the

contributions are a security requirements framework, trust assumptions, and two-part

satisfaction arguments. When using the three contributions during security requirements capture

and analysis, a context is defined, the effects of security requirements within that context are

understood, design constraints are taken into account, and the satisfaction of security

requirements is established. The usefulness of these contributions has been validated.

Our research is not unusual, in that it has provoked more questions and has suggested

opportunities to extend our work. The extensions outlined in this chapter present significant

challenges, which we look forward to addressing.

 139

References

Aho, A. V., Sethi, R., & Ullman, J. D. (1986). Compilers - Principles, Techniques, and Tools: Addison
Wesley.

Alexander, I. (2002a). "Modelling the Interplay of Conflicting Goals with Use and Misuse Cases," in
Proceedings of the 8th International Workshop on Requirements Engineering: Foundation for
Software Quality (REFSQ'02). Essen, Germany, 9-10 Sep, pp. 145-152.

Alexander, I. (2002b). "Initial Industrial Experience of Misuse Cases in Trade-Off Analysis," in
Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE'02).
Essen, Germany, pp. 61-68.

Alexander, I. (2003). "Misuse Cases in Systems Engineering," Computing and Control Engineering
Journal, vol. 14 no. 1 (Feb), pp. 40-45.

Allen, J. H. (2001). "CERT System and Network Security Practices," in Proceedings of the Fifth National
Colloquium for Information Systems Security Education (NCISSE'01). George Mason University,
Fairfax, VA, USA, 22-24 May.

Anderson, R. & Needham, R. (1995). "Programming Satan's Computer," in Lecture Notes in Computer
Science, vol. 1000, Computer Science Today: Recent Trends and Developments, van Leeuwen, J.,
Ed. Berlin / Heidelberg: Springer, pp. 426-440.

Anderson, R. (2001). Security Engineering: A Guide to Building Dependable Distributed Systems.

Anderson, R. J. (1996). "A Security Policy Model for Clinical Information Systems," in Proceedings of
the 1996 IEEE Symposium on Security and Privacy. Oakland, CA, USA, 6-8 May, pp. 30-43.

Antón, A. I. & Earp, J. B. (2001). "Strategies for Developing Policies and Requirements for Secure E-
Commerce Systems," in E-Commerce Security and Privacy, vol. 2, Advances In Information
Security, Ghosh, A. K., Ed.: Kluwer Academic Publishers, Jan 15, pp. 29-46.

Attwood, K., Kelly, T., & McDermid, J. (2004). "The Use of Satisfaction Arguments for Traceability in
Requirements Reuse for System Families: Position Paper," in Proceedings of the International
Workshop on Requirements Reuse in System Family Engineering, Eighth International Conference
on Software Reuse. Carlos III University of Madrid, Madrid, Spain, 5 Jul, pp. 18-21.

Avizienis, A., Laprie, J.-C., Randell, B., & Landwehr, C. (2004). "Basic Concepts and Taxonomy of
Dependable and Secure Computing," IEEE Transactions on Dependable and Secure Computing,
vol. 1 no. 1 (Jan-Mar), pp. 11-33.

References

140

Bandara, A. K., Kakas, A., Lupu, E. C., & Russo, A. (2006). "Using Argumentation Logic for Firewall
Policy Specification and Analysis," in Proceedings of the 17th IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management (DSOM'06), vol. 4269, Lecture Notes in
Computer Science, State, R., Meer, S. v. d., O’Sullivan, D., & Pfeifer, T., Eds. Dublin, Ireland:
Springer Berlin/Heidelberg, 23-25 October, pp. 185-196.

Bench-Capon, T. & Prakken, H. (2005). "Argumentation," in Information Technology & Lawyers:
Advanced technology in the legal domain, from challenges to daily routine, Lodder, A. R. &
Oskamp, A., Eds.: Springer, pp. 69-90.

Bench-Capon, T. J. M. & Staniford, G. (1995). "PLAID: Proactive Legal Assistance," in Proceedings of
the 5th International Conference on Artificial Intelligence and Law. College Park, MD, USA: ACM
Press, pp. 81 - 88.

Boehm, B. (1984). "Verifying and Validating Software Requirements and Design Specifications," IEEE
Software, vol. 1 no. 1 (Jan), pp. 75-88.

Boehm, B. (1988). "A Spiral Model of Software Development and Enhancement," IEEE Computer, vol.
21 no. 5 (May), pp. 61-72.

Boehm, B. (2000). "Requirements that Handle IKIWISI, COTS, and Rapid Change," IEEE Computer,
vol. 33 no. 7 (Jul), pp. 99-102.

Breaux, T. D., Vail, M. W., & Antón, A. I. (2006). "Towards Regulatory Compliance: Extracting Rights
and Obligations to Align Requirements with Regulations," in Proceedings of the 14th IEEE
International Requirements Engineering Conference (RE'06). Minneapolis, MN, USA: IEEE
Computer Society, 11-15 Sep, pp. 46-55.

Breu, R. & Innerhofer–Oberperfler, F. (2005). "Model Based Business Driven IT Security Analysis," in
Proceedings of the Third Symposium on Requirements Engineering for Information Security
(SREIS'05) held in conjunction with the 13th International Requirements Engineering Conference
(RE'05). Paris France, 29 Aug.

Brewer, D. F. C. & Nash, M. J. (1989). "The Chinese Wall security policy," in Proceedings of the 1989
IEEE Symposium on Security and Privacy. Oakland, CA, USA: IEEE Computer Society Press, 1-3
May, pp. 206 - 214.

Brito, I. & Moreira, A. (2004). "Integrating the NFR framework in a RE model," presented at Early
Aspects 2004: Aspect-Oriented Requirements Engineering and Architecture Design (AORE'04),
with the Third International Conference on Aspect-Oriented Software Development (AOSD'04),
Lancaster University, Lancaster, UK, 22 Mar.

 References

 141

Buckingham Shum, S. J. (2003). "The Roots of Computer Supported Argument Visualization," in
Visualizing Argumentation: Software Tools for Collaborative and Educational Sense-Making,
Kirschner, P. A., Buckingham Shum, S. J., & Carr, C. S., Eds. London UK: Springer-Verlag, pp. 3-
24.

Burge, J. E. & Brown, D. C. (2004). "An Integrated Approach for Software Design Checking Using
Design Rationale," in Proceedings of the First International Conference on Design Computing and
Cognition, Gero, J. S., Ed. Cambridge, MA, USA: Kluwer Academic Press, 19-21 July, pp. 557-
576.

Capkun, S. & Hubaux, J.-P. (2004). "Securing position and distance verification in wireless networks,"
Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland, Technical Report
EPFL/IC/200443, May.

CASA (2004). "Australian Technical Standard Order: Airborne Stand-alone Extended Squitter,
Automatic Dependent Surveillance - Broadcast (ADS-B), Transmit Only Equipment," Australian
Civil Aviation Safety Authority, Standard ATSO-C1005, 21 Dec.

Castro, J., Kolp, M., & Mylopoulos, J. (2001). "A Requirements-Driven Development Methodology," in
Proceedings of The 13th Conference on Advanced Information Systems Engineering (CAiSE'01).
Interlaken, Switzerland, 4-8 Jun, pp. 108-123.

Caughlin, D. (2000). "An Integrated Approach to Verification, Validation, and Accredition of Models and
Simulations," in Proceedings of the 2000 Winter Simulation Conference, vol. 1. Colorado Springs,
CO, USA, 10-13 Dec, pp. 872-881.

CENELEC (2002). "Functional safety of electrical/electronic/programmable electronic safety-related
systems — Part 4: Definitions and abbreviations," European Committee for Electrotechnical
Standardization, Brussels, European Standard IEC 61508-4, 15 March.

CERT (2006). "CERT/CC Statistics 1988-2005." Pittsburgh, PA USA: CERT CC,
http://www.cert.org/stats/cert_stats.html.

Cervo, F. (2005). "Airborne Separation Assistance Systems." EUROCONTROL, Newsletter,
http://www.eurocontrol.int/mil/public/standard_page/newsletter0605art2.html.

Chivers, H. & Fletcher, M. (2005). "Applying Security Design Analysis to a service-based system,"
Software: Practice and Experience, vol. 35 no. 9, pp. 873-897.

Chung, L. (1993). "Dealing with Security Requirements during the Development of Information
Systems," in Lecture Notes in Computer Science, vol. 685, Rolland, C., Bodart, F., & Cauvet, C.,
Eds. Paris, France: Springer, 9-11 June, pp. 234 - 251.

References

142

Chung, L., Nixon, B., Yu, E., & Mylopoulos, J. (2000). Non-Functional Requirements in Software
Engineering: Kluwer Academic Publishers.

Common Criteria Sponsoring Organizations (2006a). "Common Criteria for Information Technology
Security Evaluation Part 1: Introduction and General Model, Version 3.1 Rev 1," National Institute
of Standards and Technology CCMB-2006-09-001, Sept.

Common Criteria Sponsoring Organizations (2006b). "Common Criteria for Information Technology
Security Evaluation Part 2: Security Functional Components, Version 3.1 Rev 1," National Institute
of Standards and Technology CCMB-2006-09-002, Sept.

Common Criteria Sponsoring Organizations (2006c). "Common Criteria for Information Technology
Security Evaluation Part 3: Security assurance components, Version 3.1 Rev 1," National Institute of
Standards and Technology CCMB-2006-09-003, Sept.

Compendium Institute (2005). "Compendium." http://www.compendiuminstitute.org/.

CORAS (2005). "CORAS - A Platform for Risk Analysis of Security Critical Systems."
http://www2.nr.no/coras/.

Dardenne, A., van Lamsweerde, A., & Fickas, S. (1993). "Goal-Directed Requirements Acquisition,"
Science of Computer Programming (Elsevier), vol. 20 no. 1-2, pp. 3-50.

Dash, E. (2005). "Weakness in the Data Chain," New York Times (20 June).

De Landtsheer, R. & van Lamsweerde, A. (2005). "Reasoning about confidentiality at requirements
engineering time," in Proceedings of the 10th European Software Engineering Conference (ESEC-
FSE'05) held jointly with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. Lisbon, Portugal: ACM Press, 5-9 Sep, pp. 41 - 49.

Devanbu, P. & Stubblebine, S. (2000). "Software Engineering for Security: A Roadmap," in The Future
of Software Engineering, Finkelstein, A., Ed.: ACM Press.

Easterbrook, S. (1996). "The Role of Independent V&V in Upstream Software Development Processes,"
in Proceedings of the 2nd World Conference on Integrated Design and Process Technology (IDPT-
96). Austin, TX, USA, 1-4 Dec.

Federal Aviation Administration (2003). "Roadmap for Performance-Based Navigation, Version 1.0," US
Federal Aviation Administration, Washington, DC, USA, 22 July.

Federal Trade Commission (2006). "Matter of CardSystems Solutions Inc." Docket No.C-052 3148, 23
Feb 2006

 References

 143

Fetzer, J. H. (1988). "Program Verification: The Very Idea," Communications of the ACM, vol. 31 no. 9
(September), pp. 1048-1063.

Finkelstein, A. & Fuks, H. (1989). "Multiparty Specification," in Proceedings of the 5th International
Workshop on Software Specification and Design. Pittsburgh, PA, USA, pp. 185-195.

Firesmith, D. G. (2003a). "Common Concepts Underlying Safety, Security, and Survivability
Engineering," Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, USA,
Technical Report CMU/SEI-2003-TN-033, Dec.

Firesmith, D. G. (2003b). "Using Quality Models to Engineer Quality Requirements," Journal of Object
Technology, vol. 2 no. 5 (Sep-Oct), pp. 67-75.

Firesmith, D. G. (2004). "Specifying Reusable Security Requirements," Journal of Object Technology,
vol. 3 no. 1 (Jan-Feb), pp. 61-75.

Fischer, G., Lemke, A. C., McCall, R., & Morch, A. (1996). "Making Argumentation Serve Design," in
Design Rationale Concepts, Techniques, and Use, Moran, T. & Carroll, J., Eds.: Lawrence Erlbaum
and Associates, pp. 267-293.

Fuxman, A., Pistore, M., Mylopoulos, J., & Traverso, P. (2001). "Model Checking Early Requirements
Specifications in Tropos," in Proceedings of the Fifth IEEE International Symposium on
Requirements Engineering. Toronto, Ontario, Canada, pp. 174-181.

Gallagher, M. D. (2003). "Returning Health to the Telecom Sector While Opening Doors to Disruptive
Technology (a speech)." U.S. Department of Commerce, National Telecommunications and
Information Administration,
http://www.ntia.doc.gov/ntiahome/speeches/2003/mdgccia_09242003.htm.

Gani, A., Manson, G., Giorgini, P., & Mouratidis, H. (2003). "Analysing Security Requirements of
Information Systems using Tropos," in Proceedings of the 5th International Conference on
Enterprise Information Systems (ICEIS'03). Angers, France, 23-26 Apr.

Gans, G., Jarke, M., Kethers, S., Lakemeyer, G., Ellrich, L., Funken, C., et al. (2001). "Requirements
Modeling for Organization Networks: A (Dis)Trust-Based Approach," in Proceedings of the Fifth
IEEE International Symposium on Requirements Engineering (RE'01). Toronto, Canada: IEEE
Computer Society Press, 27-31 Aug, pp. 154-165.

Giorgini, P., Massacci, F., Mylopoulos, J., & Zannone, N. (2004). "Requirements Engineering meets
Trust Management: Model, Method, and Reasoning," in Proceedings of the Second International
Conference on Trust Management. Oxford, UK: LNCS (Springer-Verlag), 29 Mar-1 Apr, pp. 176-
190.

References

144

Giorgini, P., Massacci, F., Mylopoulos, J., & Zannone, N. (2005). "Modeling Security Requirements
Through Ownership, Permission and Delegation," in Proceedings of the 13th IEEE International
Conference on Requirements Engineering (RE'05). Paris, France: IEEE Computer Society, 29 Aug -
2 Sep, pp. 167 - 176.

Glintz, M. (2005). "Rethinking the Notion of Non-Functional Requirements," in Proceedings of the Third
World Congress for Software Quality (3WCSQ'05), vol. II. Munich, Germany, 26-30 Sep, pp. 55-64.

Gordon, T. F. (1993). "The Pleadings Game: Formalizing Procedural Justice," in Proceedings of the 4th
International Conference on Artificial Intelligence and Law. Amsterdam, The Netherlands: ACM
Press, pp. 10-19.

Grandison, T. & Sloman, M. (2003). "Trust Management Tools for Internet Applications," in Proceedings
of the The First International Conference on Trust Management, vol. 2692. Heraklion, Crete,
Greece: Springer Verlag, 28-30 May.

Haley, C. B., Laney, R. C., Moffett, J. D., & Nuseibeh, B. (2003). "Using Trust Assumptions in Security
Requirements Engineering," in The Second Internal iTrust Workshop On Trust Management In
Dynamic Open Systems. Imperial College, London, UK, 15-17 Sep.

Haley, C. B. & Nuseibeh, B. (2003). "Going On-Line on a Shoestring: An Experiment in Concurrent
Development of Requirements and Architecture," in Proceedings of the SSGRR 2003w International
Conference on Advances in Infrastructure for e-Business, e-Education, e-Science, e-Medicine, and
Mobile Technologies on the Internet. L'Aquila, Italy: Telecom Italia Learning Services, 2-11 Jan.

Haley, C. B., Laney, R. C., Moffett, J. D., & Nuseibeh, B. (2004a). "Picking Battles: The Impact of Trust
Assumptions on the Elaboration of Security Requirements," in Proceedings of the Second
International Conference on Trust Management (iTrust'04), vol. 2995. St Anne's College, Oxford,
UK: Lecture Notes in Computer Science (Springer-Verlag), 29 Mar - 1 Apr, pp. 347-354.

Haley, C. B., Laney, R. C., Moffett, J. D., & Nuseibeh, B. (2004b). "The Effect of Trust Assumptions on
the Elaboration of Security Requirements," in Proceedings of the 12th International Requirements
Engineering Conference (RE'04). Kyoto, Japan: IEEE Computer Society Press, 6-10 Sep, pp. 102-
111.

Haley, C. B., Laney, R. C., & Nuseibeh, B. (2004c). "Deriving Security Requirements from Crosscutting
Threat Descriptions," in Proceedings of the Third International Conference on Aspect-Oriented
Software Development (AOSD'04). Lancaster, UK: ACM Press, 22-26 Mar, pp. 112-121.

Haley, C. B., Laney, R. C., & Nuseibeh, B. (2005). "Validating Security Requirements Using Structured
Toulmin-Style Argumentation," Department of Computing, The Open University, Milton Keynes,
UK, Technical Report 2005/04, 21 March.

 References

 145

Haley, C. B., Moffett, J. D., Laney, R., & Nuseibeh, B. (2005). "Arguing Security: Validating Security
Requirements Using Structured Argumentation," in Proceedings of the Third Symposium on
Requirements Engineering for Information Security (SREIS'05), co-located with the 13th
International Requirements Engineering Conference (RE'05). Paris, France, 29 Aug.

Haley, C. B., Laney, R. C., Moffett, J. D., & Nuseibeh, B. (2006a). "Using Trust Assumptions with
Security Requirements," Requirements Engineering Journal, vol. 11 no. 2 (April), pp. 138-151.

Haley, C. B., Laney, R. C., Moffett, J. D., & Nuseibeh, B. (2006b). "Arguing Satisfaction of Security
Requirements," in Integrating Security and Software Engineering: Advances and Future Vision,
Mouratidis, H. & Giorgini, P., Eds.: Idea Group, pp. 16-43.

Haley, C. B., Moffett, J. D., Laney, R., & Nuseibeh, B. (2006). "A Framework for Security Requirements
Engineering," in Proceedings of the 2006 Software Engineering for Secure Systems Workshop
(SESS'06), co-located with the 28th International Conference on Software Engineering (ICSE'06).
Shanghai, China, 20-21 May, pp. 35-41.

Hall, J. G., Rapanotti, L., & Jackson, M. (2005). "Problem frame semantics for software development,"
Software and Systems Modeling, vol. 4 no. 2 (May), pp. 189-198.

Hammond, J., Rawlings, R., & Hall, A. (2001). "Will it work?," in Proceedings of the Fifth IEEE
International Symposium on Requirements Engineering (RE'01), 27-31 Aug 2001, pp. 102-109.

He, Q. & Antón, A. I. (2003). "A Framework for Modeling Privacy Requirements in Role Engineering,"
in Proceedings of the Ninth International Workshop on Requirements Engineering: Foundation for
Software Quality, The 15th Conference on Advanced Information Systems Engineering (CAiSE'03).
Klagenfurt/Velden, Austria, 16 Jun.

He, Q. (2005). "Requirements-Based Access Control Analysis and Policy Specification," PhD
Dissertation, North Carolina State University,

Heitmeyer, C. L. (2001). "Applying 'Practical' Formal Methods to the Specification and Analysis of
Security Properties," in Proceedings of the International Workshop on Information Assurance in
Computer Networks: Methods, Models, and Architectures for Network Computer Security (MMM
ACNS 2001), vol. 2052. St. Petersburg, Russia: Springer-Verlag, Heidelberg, 21-23 May, pp. 84-89.

Hendricks, V. & Symons, J. (2006). "Epistemic Logic." Stanford University,
http://plato.stanford.edu/entries/logic-epistemic/.

Hull, M. E. C., Jackson, K., & Dick, A. J. J. (2002). Requirements Engineering. UK: Springer Verlag.

Hunter, A. (2004). "Making Argumentation More Believable," in Proceedings of the Nineteenth National
Conference on Artificial Intelligence. San Jose, CA, USA: The AAAI Press, pp. 269-274.

References

146

Hunter, A. (2005). "Presentation of Arguments and Counterarguments for Tentative Scientific
Knowledge," in Proceedings of the Second International Workshop on Argumentation in Multi-
Agent Systems (ArgMAS'05), vol. 4049, Lecture Notes in Computer Science, Carbonell, J. G. &
Siekmann, J., Eds. Utrecht, The Netherlands: Springer Berlin/Heidelberg, pp. 245-263.

IEEE (1998). "IEEE Standard for Software Verification and Validation," IEEE 1012-1998, 20 Jul.

In, H. & Boehm, B. W. (2001). "Using WinWin Quality Requirements Management Tools: A case
study," Annals of Software Engineering (Kluwer), vol. 11 no. 1 (Nov), pp. 141-174.

ISO/IEC (1999a). "Information Technology - Security Techniques - Evaluation Criteria for IT Security -
Part 3: Security Assurance Requirements," ISO/IEC, Geneva, Switzerland, International Standard
15408-3, 1 Dec.

ISO/IEC (1999b). "Information Technology - Security Techniques - Evaluation Criteria for IT Security -
Part 2: Security Functional Requirements," ISO/IEC, Geneva, Switzerland, International Standard
15408-2, 1 Dec.

ISO/IEC (1999c). "Information Technology - Security Techniques - Evaluation Criteria for IT Security -
Part 1: Introduction and General Model," ISO/IEC, Geneva, Switzerland, International Standard
15408-1, 1 Dec.

Jackson, M. (1995). Software Requirements and Specifications: Addison Wesley.

Jackson, M. (2001). Problem Frames: Addison Wesley.

Jackson, M. (2006). "The Structure of Software Development Thought," in Structure for Dependability:
Computer-Based Systems from an Interdisciplinary Perspective, Besnard, D., Gacek, C., & Jones,
C., Eds.: Springer, pp. 228-253.

Jonsson, E. (1998). "An Integrated Framework for Security and Dependability," in Proceedings of the
1998 Workshop on New Security Paradigms. Charlottesville, VA, USA, 22-26 Sep, pp. 22-29.

Jürjens, J. (2005). Secure Systems Development with UML. Berlin & Heidelberg: Springer-Verlag.

Kelly, T. P. (1999). "Arguing Safety - A Systematic Approach to Safety Case Management," D.Phil
Dissertation, University of York, York, UK.

de Kleer, J. (1986). "An assumption-based TMS," Artificial Intelligence, vol. 28 no. 2 (March), pp. 127-
162.

Kletz, T. (1999). Hazop and Hazan: Identifying and assessing process industry hazards, Fourth ed.
Rugby, UK: Institution of Chemical Engineers.

 References

 147

Kotonya, G. & Sommerville, I. (1998). Requirements Engineering: Processes and Techniques. United
Kingdom: John Wiley and Sons.

van Lamsweerde, A. (2000). "Requirements Engineering in the Year 00: A Research Perspective," in
Proceedings of the 22nd International Conference on Software Engineering (ICSE'00): IEEE
Computer Society Press, 4-11 Jun.

van Lamsweerde, A. & Letier, E. (2000). "Handling Obstacles in Goal-oriented Requirements
Engineering," Transactions on Software Engineering (IEEE), vol. 26 no. 10 (Oct), pp. 978-1005.

van Lamsweerde, A. (2001). "Goal-oriented Requirements Engineering: A Guided Tour," in Proceedings
of the Fifth IEEE International Symposium on Requirements Engineering (RE'01). Toronto, Canada:
IEEE Computer Society Press, 27-31 Aug, pp. 249-263.

van Lamsweerde, A., Brohez, S., De Landtsheer, R., & Janssens, D. (2003). "From System Goals to
Intruder Anti-Goals: Attack Generation and Resolution for Security Requirements Engineering," in
Requirements for High Assurance Systems Workshop (RHAS'03), Eleventh International
Requirements Engineering Conference (RE'03). Monterey, CA, USA, 8 Sep.

van Lamsweerde, A. (2004). "Elaborating Security Requirements by Construction of Intentional Anti-
Models," in Proceedings of the 26th International Conference on Software Engineering (ICSE'04).
Edinburgh, Scotland, 26-28 May, pp. 148-157.

Laprie, J.-C. (1992). "Dependability: A Unifying Concept for Reliable, Safe, Secure Computing," in
Proceedings of the IFIP 12th World Computer Congress on Algorithms, Software, Architecture -
Information Processing. Madrid, Spain: North-Holland, 7-11 Sept, pp. 585-593.

Lautieri, S., Cooper, D., & Jackson, D. (2005). "SafSec: Commonalities Between Safety and Security
Assurance," in Constituents of Modern System-safety Thinking: Proceedings of the Thirteenth
Safety-critical Systems Symposium, Redmill, F. & Anderson, T., Eds. Southampton: Springer, pp.
65-78.

Lee, J. & Lai, K.-Y. (1991). "What's in Design Rationale?," Human-Computer Interaction, vol. 6 no. 3-4,
pp. 251-280.

Lee, Y., Lee, J., & Lee, Z. (2002). "Integrating Software Lifecycle Process Standards with Security
Engineering," Computers and Security, vol. 21 no. 4, pp. 345-355.

Leveson, N. G. (1986). "Software Safety: Why, What, and How," ACM Computing Surveys, vol. 18 no. 2
(June), pp. 125-163.

References

148

Lin, L., Nuseibeh, B., Ince, D., Jackson, M., & Moffett, J. (2003). "Introducing Abuse Frames for
Analyzing Security Requirements," in Proceedings of the 11th IEEE International Requirements
Engineering Conference (RE'03). Monterey, CA, USA, 8-12 Sep, pp. 371-372.

Liu, L., Yu, E., & Mylopoulos, J. (2003). "Security and Privacy Requirements Analysis Within a Social
Setting," in Proceedings of the 11th IEEE International Requirements Engineering Conference
(RE'03). Monterey, CA, USA, 8-12 Sept, pp. 151-161.

MacKenzie, D. (2001). Mechanizing Proof. Cambridge, MA, USA & London, England: MIT Press.

McDermid, J. A., Nicholson, M., Pumfrey, D. J., & Fenelon, P. (1995). "Experience with the application
of HAZOP to computer-based systems," in Proceedings of the Tenth Annual Conference on
Computer Assurance (COMPASS '95). Gaithersburg, MD, USA, 25-29 June, pp. 37-48.

McDermott, J. & Fox, C. (1999). "Using Abuse Case Models for Security Requirements Analysis," in
Proceedings of the 15th Computer Security Applications Conference (ACSAC'99). Phoenix, AZ,
USA: IEEE Computer Society Press, 6-10 Dec, pp. 55-64.

McDermott, J. (2001). "Abuse-Case-Based Assurance Arguments," in Proceedings of the 17th Computer
Security Applications Conference (ACSAC'01). New Orleans, LA, USA: IEEE Computer Society
Press, 10-14 Dec, pp. 366-374.

McNamara, P. (2006). "Deontic Logic." Stanford University, http://plato.stanford.edu/entries/logic-
deontic/.

Mead, N. R., Hough, E. D., & Stehney, T. R., II (2005). "Security Quality Requirements Engineering
(SQUARE) Methodology," CMU/SEI, Technical Report CMU/SEI-2005-TR-009, ESC-TR-2005-
009, November.

Moffett, J. D., Hall, J. G., Coombes, A., & McDermid, J. A. (1996). "A Model for a Causal Logic for
Requirements Engineering," Requirements Engineering, vol. 1 no. 1 (March), pp. 27-46.

Moffett, J. D. & Nuseibeh, B. (2003). "A Framework for Security Requirements Engineering,"
Department of Computer Science, University of York, York, UK, Technical Report YCS368, Aug.

Moffett, J. D., Haley, C. B., & Nuseibeh, B. (2004). "Core Security Requirements Artefacts," Department
of Computing, The Open University, Milton Keynes, UK, Technical Report 2004/23, June.

Mouratidis, H., Giorgini, P., & Manson, G. (2003). "Integrating Security and Systems Engineering:
Towards the Modelling of Secure Information Systems," in Proceedings of the 15th Conference on
Advanced Information Systems Engineering (CAiSE'03). Klagenfurt/Velden, Austria: Springer-
Verlag, 16-20 Jun, pp. 63-78.

 References

 149

Mylopoulos, J., Borgida, A., Jarke, M., & Koubarakis, M. (1990). "Telos: Representing Knowledge
About Information Systems," ACM Transactions on Information Systems (TOIS), vol. 8 no. 4
(October), pp. 325 - 362.

Mylopoulos, J., Chung, L., & Nixon, B. (1992). "Representing and Using Nonfunctional Requirements: A
Process-Oriented Approach," Transactions on Software Engineering (IEEE), vol. 18 no. 6 (Jun), pp.
483-497.

Newman, S. E. & Marshall, C. C. (1991). "Pushing Toulmin Too Far: Learning From an Argument
Representation Scheme," Xerox PARC, Palo Alto, CA, USA, Technical Report SSL-92-45.

NIST (1995). "An Introduction to Computer Security: The NIST Handbook," National Institute of
Standards and Technology (NIST), Special Pub SP 800-12, Oct.

Nuseibeh, B. (2001a). "Weaving Together Requirements and Architectures," IEEE Computer, vol. 34 no.
3 (Mar), pp. 115-117.

Nuseibeh, B. (2001b). "Weaving the Software Development Process Between Requirements and
Architecture," in From Software Requirements to Architectures (STRAW'01), 23rd International
Conference on Software Engineering (ICSE'01). Toronto, Ontario, Canada, 12-19 May.

Pemberton, D. & Sommerville, I. (1997). "VOCAL: A Framework for Test Identification and
Deployment," IEE Proceedings for Software Engineering, vol. 144 no. 5 (Oct-Dec), pp. 249 -260.

Pfleeger, C. P. & Pfleeger, S. L. (2002). Security in Computing: Prentice Hall.

Potts, C. & Bruns, G. (1988). "Recording the Reasons for Design Decisions," in Proceedings of the 10th
International Conference on Software Engineering (ICSE'88). Singapore: IEEE Computer Society,
pp. 418-427.

Ramesh, B. & Dhar, V. (1992). "Supporting Systems Development by Capturing Deliberations During
Requirements Engineering," Transactions on Software Engineering (IEEE), vol. 18 no. 6 (June), pp.
498-510.

Rashid, A., Sawyer, P., Moreira, A. M. D., & Araújo, J. (2002). "Early Aspects: A Model for Aspect-
Oriented Requirements Engineering," in Proceedings of the IEEE Joint International Conference on
Requirements Engineering (RE'02). Essen, Germany, 9-13 Sep, pp. 199-202.

Rashid, A., Moreira, A. M. D., & Araújo, J. (2003). "Modularisation and Composition of Aspectual
Requirements," in Proceedings of the 2nd International Conference on Aspect-oriented Software
Development (AOSD'03). Boston, MA, USA: ACM Press, 17-21 Mar, pp. 11-20.

References

150

Redwine, S. T., Jr. (Editor) (2006). "Software Assurance: A Guide to the Common Body of Knowledge to
Produce, Acquire, and Sustain Secure Software," Department of Homeland Security, Version
1.05.245, 15 Aug.

Reed, C. (2005). "Araucaria." http://araucaria.computing.dundee.ac.uk/.

Rekkas, C. (2005). "Cascade Charter," EUROCONTROL Report, Version 1.0, 11 Apr.

Robertson, S. & Robertson, J. (1999). Mastering the Requirements Process, First ed: Addison-Wesley
Professional.

Rushby, J. (2001). "Security Requirements Specifications: How and What?," in Proceedings of the
Symposium on Requirements Engineering for Information Security (SREIS). Indianapolis, IN, USA,
5-6 Mar.

Secure Electronic Transaction LLC (1997a). "SET Secure Electronic Transaction Specification Book 3:
Formal Protocol Definition, Version 1.0," Purchase, NY, USA, 31 May.

Secure Electronic Transaction LLC (1997b). "SET Secure Electronic Transaction Specification Book 2:
Programmer's Guide, Version 1.0," Purchase, NY, USA, 31 May.

Secure Electronic Transaction LLC (1997c). "SET Secure Electronic Transaction Specification Book 1:
Business Description, Version 1.0," Purchase, NY, USA, 31 May.

Secure Software Inc. (2006). "CLASP: Comprehensive Lightweight Application Security Process,"
Secure Software Inc., McLean, VA, USA Version 2.0.

Senior Officials Group - Information Systems Security (1991). "Information Technology Security
Evaluation Criteria (ITSEC)," Department of Trade and Industry, London, Version 1.2, June.

Sindre, G. & Opdahl, A. L. (2000). "Eliciting Security Requirements by Misuse Cases," in Proceedings of
the 37th International Conference on Technology of Object-Oriented Languages and Systems
(TOOLS-Pacific'00). Sydney, Australia, 20-23 Nov, pp. 120-131.

Soudah, J., Pilch, M., Doebling, S. W., & Nitta, C. (2004). "Verification & Validation: Credibility in
Stockpile Modeling and Simulation," National Nuclear Security Administration, Fact Sheet
NA/ASC-200FS-04-Rev.1.

Spafford, E. H. (1989). "The internet worm program: an analysis," ACM SIGCOMM Computer
Communication Review, vol. 19 no. 1 (Jan), pp. 17-57.

Srivatanakul, T., Clark, J. A., & Polack, F. (2004). "Writing Effective Security Abuse Cases," Department
of Computer Science, University of York, York, UK, Technical Report YCS-2004-375, 11 May.

 References

 151

Standish Group (1995). "The CHAOS Report," Research Report.

Standish Group (1999). "CHAOS: A Recipe for Success," Research Report.

Standish Group (2001). "EXTREME CHAOS," Research Report.

Swartout, W. & Balzar, R. (1982). "On the Inevitable Intertwining of Specification and Implementation,"
Communications of the ACM, vol. 25 no. 7 (Jul), pp. 438-440.

Tettero, O., Out, D. J., Franken, H. M., & Schot, J. (1997). "Information security embedded in the design
of telematics systems," Computers and Security, vol. 16 no. 2, pp. 145-164.

Thompson, K. (1984). "Reflections on Trusting Trust," Communications of the ACM, vol. 27 no. 8 (Aug),
pp. 761-763.

Toulmin, S. E. (1958). The Uses of Argument. Cambridge, UK: Cambridge University Press.

Toulmin, S. E., Rieke, R. D., & Janik, A. (1979). An Introduction to Reasoning. New York, NY, USA:
Macmillan.

Viega, J., Kohno, T., & Potter, B. (2001). "Trust (and Mistrust) in Secure Applications," Communications
of the ACM, vol. 44 no. 2 (Feb), pp. 31-36.

Viega, J. & McGraw, G. (2002). Building Secure Software: How to Avoid Security Problems the Right
Way: Addison Wesley.

Viega, J. (2005a). "Building Security Requirements with CLASP," in Proceedings of the 2005 workshop
on Software Engineering for Secure Systems (SESS'05), held in conjuntion with the 27th
International Conference on Software Engineering (ICSE'05). St Louis, MO, USA: ACM Press, 15-
16 May, pp. 1-7.

Viega, J. (2005b). "Security in the Software Development Lifecycle: An introduction to CLASP, the
Comprehensive Lightweight Application Security Process," Secure Software, Inc., McLean,
Virginia, USA, White Paper.

Watson, M. (2006). "UK ADS-B in a Radar Environment." EUROCONTROL, Presentation slides,
http://www.eurocontrol.int/cascade/gallery/content/public/documents/Presentations/Session%202%
20-%20Trials%20and%20Implementations/Watson%20-%20UK%20ADS-
B%20in%20a%20radar%20environment.pdf.

Yu, E. (1997). "Towards Modelling and Reasoning Support for Early-Phase Requirements Engineering,"
in Proceedings of the Third IEEE International Symposium on Requirements Engineering (RE'97).
Annapolis, MD, USA, 6-10 Jan, pp. 226-235.

References

152

Yu, E. & Liu, L. (2001). "Modelling Trust for System Design using the i* Strategic Actors Framework,"
in Trust in Cyber-societies, Integrating the Human and Artificial Perspectives, Falcone, R., Singh,
M. P., & Tan, Y.-H., Eds.: Springer-Verlag Heidelberg, pp. 175-194.

Yu, E. & Cysneiros, L. M. (2002). "Designing for Privacy and Other Competing Requirements," in
Second Symposium on Requirements Engineering for Information Security (SREIS'02). Raleigh, NC,
USA, 15-16 Oct.

Yu, Y., Leite, J. C. S. d. P., & Mylopoulos, J. (2004). "From Goals to Aspects: Discovering Aspects from
Requirements Goal Models," in Proceedings of the 12th International Requirements Engineering
Conference (RE'04). Kyoto, Japan: IEEE Computer Society Press, 6-10 Sept, pp. 38-47.

Zave, P. & Jackson, M. (1997). "Four Dark Corners of Requirements Engineering," Transactions on
Software Engineering and Methodology (ACM), vol. 6 no. 1 (Jan), pp. 1-30.

Zhuang, L., Zhou, F., & Tygar, J. D. (2005). "Keyboard Acoustic Emanations Revisited," in Proceedings
of the 12th ACM Conference on Computer and Communications Security. Alexandra, VA, USA, 7-
11 Nov, pp. 373-382.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 2400
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 2400
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

