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Abstract 

 

When considering the security of a system, the analyst must simultaneously work with two 

types of properties: those that can be shown to be true, and those that must be argued as being 

true. The first consists of properties that can be demonstrated conclusively, such as the type of 

encryption in use or the existence of an authentication scheme. The second consists of things 

that cannot be so demonstrated but must be considered true for a system to be secure, such as 

the trustworthiness of a public key infrastructure or the willingness of people to keep their 

passwords secure. The choices represented by the second case are called trust assumptions, and 

the analyst should supply arguments explaining why the trust assumptions are valid. 

This thesis presents three novel contributions: a framework for security requirements 

elicitation and analysis, based upon the construction of a context for the system; an explicit 

place and role for trust assumptions in security requirements; and structured satisfaction 

arguments to validate that a system can satisfy the security requirements. The system context is 

described using a problem-centered notation, then is validated against the security requirements 

through construction of a satisfaction argument. The satisfaction argument is in two parts: a 

formal argument that the system can meet its security requirements, and structured informal 

arguments supporting the assumptions exposed during argument construction. If one cannot 

construct a convincing argument, designers are asked to provide design information to resolve 

the problems and another pass is made through the framework to verify that the proposed 

solution satisfies the requirements. Alternatively, stakeholders are asked to modify the goals for 

the system so that the problems can be resolved or avoided. The contributions are evaluated by 

using the framework to do a security requirements analysis within an air traffic control 

technology evaluation project. 
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Chapter 1. Introduction 

Over the last few years, reports of software security failures have become commonplace. 

Statistics from the Software Engineering Institute’s CERT Coordination Center, a center of 

internet security expertise, show that the number of reported application vulnerabilities rose 

from 171 in 1995 to 5,990 in 2005 (CERT, 2006). The sources of problems are diverse. One 

source is programming errors; in 2003, one internet worm named Blaster, exploiting a flaw in 

Microsoft’s Windows operating system, reportedly infected approximately 500,000 computers 

(Gallagher, 2003). “Estimates are that it [Blaster] cost approximately $1.3 billion to correct and 

in lost productivity” (Ibid). Another source is not looking at security requirements of the 

complete system. For example, CardSystems Solutions exposed details of some 40 million 

credit cards by storing unneeded transaction history data where hackers could get to it (Dash, 

2005); this visible storage was part of their system but not part of their security planning. The 

resulting loss has not been disclosed, but is known to be in excess of several millions of dollars 

(Federal Trade Commission, 2006). These two examples strongly suggest that improving 

software-based system security would have a significant financial impact. 

This thesis addresses the second source of security problems: the failure to consider security 

requirements of the complete system, or said another way, the failure to obtain adequate 

security requirements for a system. By adequate security requirements, we mean requirements 

that if respected, lead to a system’s security goals being satisfied. Adequate general 

requirements have been shown to have a very positive impact on the success of projects: for 

examples see the Standish Group’s Chaos reports (Standish Group, 1995, 1999, 2001), and the 

introduction to Mead et al. (Mead, Hough, & Stehney, 2005). Although the empirical evidence 

is not yet unequivocal, there is evidence that adequate security requirements will have as 

positive an impact on system security as adequate general requirements have on system success 
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(Mead, Hough et al., 2005). The CLASP process (Comprehensive Lightweight Application 

Security Process), co-authored by John Viega (Viega & McGraw, 2002; Viega, 2005a, b), 

emphasizes the importance of security requirements, saying that one should “[e]nsure that 

security requirements have the same level of ‘citizenship’ as all other ‘must haves.’” (Secure 

Software Inc., 2006) 

Before continuing further, we must agree on what is meant by system. In this thesis, the word 

system includes the software, and in addition the people who use the software and all the bits 

and pieces around the software (computers, printers, etc.). We are dealing with requirements, 

and this definition of system is consistent with common usage in requirements engineering. For 

example, Zave and Jackson say that “we use ‘system’ only to refer to a general artifact that 

might have both manual and automatic components, such as an ‘airline reservation system’.” 

(1997). Van Lamsweerde uses the word similarly: “The target system is not just a piece of 

software, but also comprises the environment that will surround it; […].” (2000). Going a bit 

further back, Swartout & Balzer include the pipes & bins in the system when describing their 

package router example (1982). In summary, we can say that requirements engineering is 

charged with providing detailed & relevant information about the requirements that a system is 

to satisfy. Our usage of system is consistent with this. 

We claim that the adequacy of security requirements can be evaluated using three criteria. 

The first criterion is clarity: one must have a clear understanding of what the security 

requirements mean, and their effects within the system context in which they apply. The second 

is incorporation of assumptions about behavior: security requirements must take assumptions 

about the behavior of objects found in the system into consideration. The third is satisfaction: 

one must be able to determine whether the security requirements satisfy the security goals, and 

whether the system can satisfy the requirements. We propose three contributions to assist a 

requirements engineer with developing security requirements that satisfy these criteria. The first 

is a security requirements framework, incorporating system context and providing a practical 

definition of security requirements. The second is an explicit place and role for assumptions, 

concentrating on their role in security requirements satisfaction arguments. The third is the use 
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of formal and informal structured arguments to validate that a system can satisfy its security 

requirements. The second and third contributions are incorporated into the first, our security 

requirements framework, facilitating an understanding of eliciting, validating, and verifying 

security requirements and other artifacts. 

We explore these three criteria in Sections 1.1 – 1.3, following. The contributions are further 

discussed in Section 1.4 of this introduction and, of course, throughout the remainder of this 

thesis. 

1.1 Criterion One – Clarity of Security Requirements 

Security needs arise when stakeholders establish that some objects involved in a system, be 

they tangible (e.g., cash) or intangible (e.g., information), have value. Such objects are termed 

assets (ISO/IEC, 1999c), and the stakeholders naturally wish to protect themselves from any 

harm that might come from abuse of these assets. Security goals express this desire, describing 

the involved asset(s) and the harm to be prevented. The usual approach is to treat these security 

goals as non-functional requirements. The question to answer is whether this approach results in 

clear security requirements that respond to the needs of the system. 

1.1.1 Security Requirements as Non-Functional Requirements 

Security requirements have traditionally been considered to be non-functional quality 

requirements ((Chung, Nixon, Yu, & Mylopoulos, 2000; Devanbu & Stubblebine, 2000; 

Firesmith, 2004; Glintz, 2005) and many others), meaning that like other kinds of quality 

requirements (e.g., performance, usability, cost to run), they do not have simple yes/no 

satisfaction criteria. Instead, one must somehow determine whether a quality requirement has 

been satisficed (satisfied well enough) (Mylopoulos, Chung, & Nixon, 1992). This is difficult in 

general, and security requirements present some additional challenges. First, once one descends 

from the very general and obvious statements (e.g., ‘the system should be secure’), instead of 

talking about what is to happen, people tend to think about and express security requirements in 

terms of things that are to be prevented. Verifying that something is prevented can be likened to 
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proving a negative; it is very difficult, if not impossible, to show that there are no counter-

examples. Second, for security requirements, the tolerances on ‘satisfied enough’ are much 

smaller, usually approaching zero; stakeholders want criteria for security requirements to be 

very close to yes/no. Third, the amount of time and money that stakeholders might be willing to 

dedicate to satisfying a security requirement can depend on the risk and impact of a security 

failure; one cannot justify a large expense to protect something of low direct or indirect value. 

One must be able to connect specific development & operational expense to the requirements 

being satisfied, in order to determine cost/benefit information. 

Expressing security requirements in a positive sense, similar to functional requirements, 

would reduce the difficulties described above. Functional requirements describe what is to 

happen, not what is not to happen, helping the implementers understand what they are to do. 

Tolerances are (in theory) simpler; functional requirements have binary satisfaction criteria, 

either the function happens or it does not, and they can have test criteria to determine what ‘the 

function happens’ means. The cost of making something happen is easier to measure than the 

cost of making something not happen, facilitating cost/benefit analysis. Expressing security 

requirements in the positive sense (what is to happen) would bring similar benefits. 

1.1.2 Security Requirements & Context 

System context can have a profound effect on both security goals and security requirements. 

As said earlier, in this thesis the word system represents more than the software. We include the 

environment the software runs within: the people who will use, maintain, and depend on the 

system; the physical environment the system is to exist within; the operating environment the 

software runs within; and any systems, computer-based and otherwise, already in place. 

Security requirements can vary, depending on the context. To illustrate, consider some software 

intended for use by an executive on his or her desktop computer. The software may or may not 

have any intrinsic need for security; a spreadsheet program would be a good example. Even 

though the spreadsheet program may have no intrinsic security goals associated with it, the 

information the executive manipulates may be confidential, creating a maintain confidentiality 
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security goal for the system, where the system comprises the computer, the office, the 

spreadsheet program, the executive, and the confidential data. The security goal arises because 

of how the spreadsheet is used, which is a property of the context within which the program 

resides. When the system components {computer, office, spreadsheet program, executive} are 

considered alone, no confidentiality security goal arises. The goal arises only when 

{confidential data} is added.  

Continuing the example, one might consider satisfying the confidentiality goal by adding a 

security requirement that the system architecture include a locking office door, something 

completely divorced from the software. Alternatively, one might require that the spreadsheet 

program should satisfy the goal, perhaps by addition of authentication and encryption. However, 

these solutions would be inadequate if the executive is in an office that is not soundproofed, and 

either a) the executive uses a program that reads the information aloud, permitting an attacker to 

listen without being seen, or b) if the attacker can hear and decode the keystrokes typed on the 

executive’s keyboard (Zhuang, Zhou, & Tygar, 2005). The example shows that properties of the 

system context that are frequently not considered can have a profound effect on the security of 

the system. 

1.2 Criterion Two – Incorporation of Assumptions about Behavior 

When considering system behavior, the requirements engineer must determine which parts of 

the world are part of the problem, and therefore to be included in the analysis. An extreme view 

is that every atom in the universe is part of every problem, and therefore an analysis must 

consider everything made of atoms. As this is clearly impractical, the analyst must choose a 

subset of domains (real-world elements) that s/he considers pertinent (Jackson, 1995, 2001). In 

so choosing, the analyst defines the system context; it consists of those domains having 

properties considered relevant to the problem.  

When considering security, one factor influencing an analyst’s choice about whether or not a 

domain is relevant is the analyst’s set of trust assumptions (Viega, Kohno, & Potter, 2001; 

Viega & McGraw, 2002). Trust assumptions are explicit or implicit choices to trust a domain 
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will behave as expected. These assumptions can have a significant impact on the security of a 

system. For example, most analysts implicitly assume that the compiler is not a security risk, 

and it would never occur to them to include the compiler in the security analysis. In his 1983 

Turing award acceptance lecture, Ken Thompson (1984) demonstrated that this assumption 

might not be justified by showing how a compiler could be a Trojan horse, introducing 

trapdoors into applications. Viega et al. (2001) claim that “application providers often assume 

that their code will execute in a non-hostile environment”, and then show how this assumption 

leads to security breaches. Their example shows ‘secrets’ hidden in code, where the secrets 

easily can be exposed through examination of the executable file. The Thompson and Viega 

examples illustrate how the requirements engineer’s implicit trust of some domains in the 

environment can introduce unknown amounts of risk into the system. Viega et al. went as far as 

to say that “without recognizing all the entities and their trust relationships in a software system 

during the requirements phase of a project, that project is doomed from the start.” (2001) 

The voice-reading spreadsheet program example in section 1.1.2 further illustrates the point. 

The analyst easily could tacitly, and erroneously, consider that the spreadsheet program did not 

present a security risk, assuming that the office did not leak information, by not considering its 

use in an office without soundproofed walls. Like context, trust assumptions can have a 

significant impact on security requirements. 

1.3 Criterion Three – Satisfaction of Security Requirements 

If one goes to the trouble to produce security requirements for a system, it is reasonable to 

ask whether the system can satisfy the requirements. The more rigorous the process used to 

establish satisfaction, the more confidence one can have that the system will be secure. The 

strongest process is a proof. A weaker alternative to a proof is an argument. A high-quality 

argument engenders confidence that the requirements will be satisfied. The weaker the 

argument, the more faith one must have that the result will, in the end, be acceptable. 

No analysis of security requirement satisfaction can include every possible domain that could 

be a part of the system. Every proof or argument will include trust assumptions, at minimum 
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that the domains not considered will do no harm, and establishment of satisfaction depends 

upon the validity of these trust assumptions. Rigorous proofs of validity of trust assumptions are 

hard to come by, because malice and accident must be taken into account. Instead of proving 

that a trust assumption is valid, one instead produces arguments that the trust assumption should 

be considered valid. The argument must be sufficiently convincing, using properties of the 

system and domains as evidence.  

Trust assumption validity arguments are, in effect, sub-arguments of the proof or argument 

that security requirements are satisfied, and their quality directly affects the validity of the 

containing argument. The sub-arguments should be an explicit part of establishing satisfaction 

of security requirements. 

1.4 Contributions 

As indicated above, this thesis presents three novel contributions aimed at assisting a 

requirements engineer with developing adequate security requirements: 

1. A security requirements framework, incorporating system context, and providing a practical 

definition of security requirements that have clear yes/no satisfaction criteria. The 

framework also provides a scaffold for the next two contributions. 

2. Further elaboration of trust assumptions, concentrating on their role in security requirements 

satisfaction arguments. 

3. The use of formal and informal structured arguments to validate that a system can satisfy its 

security requirements. 

1.5 Novelty of the Contributions 

The three contributions build upon existing work. The discussion of the meaning of system 

on page 14 showed that context is important in requirements engineering. Others assert that 

security requirements analysis must be placed in a system context, or the analysis will not be 

complete; see, for example, (Devanbu & Stubblebine, 2000) and (Firesmith, 2003a). Our 

contribution is a systematic incorporation of context into a framework for security requirements 
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engineering, and then using the context to discover trust assumptions and to develop the 

satisfaction arguments. 

Trust assumptions are mentioned by name in Viega in (Viega, Kohno et al., 2001; Viega & 

McGraw, 2002), and are alluded to as simple assumptions in other work (e.g., (Firesmith, 

2003a; van Lamsweerde, 2004)). Our contribution is making explicit their role both in 

determining the size of the context and in security requirement satisfaction arguments. 

Satisfaction arguments have appeared in the literature in several guises. For example, 

correctness arguments appear in (Jackson, 2001) and (Hall, Rapanotti, & Jackson, 2005), 

satisfaction arguments in (Attwood, Kelly, & McDermid, 2004), (Hammond, Rawlings, & Hall, 

2001), and (Hull, Jackson, & Dick, 2002: pgs 143-158), adequacy arguments in (Jackson, 

2006), and safety arguments in (Kelly, 1999). Our contribution is the extension of these 

arguments for security, proposing two additional factors that should be considered: trust 

assumptions within a system context. We further propose that representing security satisfaction 

arguments by a combination of formal and structured informal arguments leads to significant 

benefits. The formal arguments provide the yes/no criteria, assuring that the requirements are 

satisfied, assuming that the trust assumptions are valid. The informal arguments, using a 

jurisprudence-like style of argumentation, show why the trust assumptions are acceptable. The 

informal arguments are not proofs, but instead are sufficiently convincing in their context. 

1.6 Research Methodology 

Our research was piloted by the three classic steps: a) identify gaps through examination of 

the literature, b) propose ways to fill (some of) the gaps, then c) validate that the gaps are indeed 

filled. The first two steps presented no particular difficulty beyond the inherent intellectual 

challenge. The third step was more problematic. 

Three options to validate the contributions presented in this thesis were considered:  

• Testing the contributions by replaying an existing case study. 

• Testing the contributions using constructed examples. 
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• Testing the contributions in a live industrial project. 

We discuss each of these options in turn below. 

1.6.1 Option 1 – Validation by Replaying an Existing Case Study 

This form of validation would use as its baseline an existing published case study. The 

project would be run again using the contributions presented in this thesis, and the results 

compared. A case study to be used in this fashion must meet the following preconditions: 

1. The project must have identified security as a success factor. 

2. The documentation in the case study for the requirements phase must be at a level sufficient 

to understand the goals of the project. 

3. There must be sufficient information in the case study to permit construction of the system 

context, to permit use of the contributions of this thesis, and to compare the results. 

Despite extensive searches of both the literature and information on the web, we were unable to 

find a case study that met these requirements. We hypothesize that such case studies are not 

available because commercial entities are very unwilling to advertise their security failures, and 

because considering security before system design (e.g., during requirements analysis) is new. 

1.6.2 Option 2 – Validation using Constructed Examples 

This form of validation requires one to construct a problem where security plays a role, then 

work through the example problem to show how the contributions presented in this thesis help 

identify security requirements. The only precondition is that the example shows how the 

contributions presented in this thesis are used. We use this validation method in this thesis. 

Validating using constructed examples has the following strengths: 

1. The examples can be constructed to best illustrate the contributions. 

2. The contributions can be described in a tutorial fashion. 

3. The examples can be perturbed, if needed, to show alternative results. 

Using a constructed example has one significant disadvantage: the way the example is 

constructed may mask problems with the contributions that real examples would make evident. 
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To help minimize this risk and to provide us with a sanity check on our work, we have 

published the contributions in several peer-reviewed venues (see the next section). The 

criticisms received have helped enormously with filling in gaps in the contributions. 

1.6.3 Option 3 – Validation by Testing on a Live Project 

To validate by testing on a live project, one would in effect do the security requirements 

work twice, once in the way that the project had intended, and once using the contributions 

presented in this thesis. The results would then be compared. Successful use of this validation 

method has several preconditions: 

1. The project stakeholders must have identified security as a success factor for the project. 

2. The project schedule (start & finish) must be compatible with the PhD research timeline. 

3. The complexity of the project must be compatible with the resources available. 

4. The project must be willing to dedicate resources sufficient to use the framework presented 

in Chapter 5 and, in particular, the satisfaction arguments presented in Chapter 6. 

No industrial partner available to us had a project that met all the above conditions. In fact, no 

project met conditions 2 and 4.  

Given that no project met all the conditions, we decided to try to validate the contributions in 

a project that met some of the conditions, using a ‘trial’ approach as opposed to an experiment 

that compared the two outcomes. We assumed a consultancy-like role in one project that met 

conditions 1 and 3, and we were able to show that the contributions could be of value during the 

design phase; these results are presented in Chapter 7. Unfortunately, the project's duration 

prevented us from following the project to its completion, so we do not know what use the 

project made of the information we developed. 

1.7 Publication History of Contributions 

Much of the material in this thesis has been published, primarily in international venues, with 

increasing levels of maturity. The publications were peer-reviewed, with the exception of three 

technical reports.  
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Trust assumptions, (Chapter 4) are described in (Haley, Laney, Moffett, & Nuseibeh, 2003, 

2004a, b, 2006a), and used in (Haley, Moffett, Laney, & Nuseibeh, 2005; Haley, Laney, 

Moffett, & Nuseibeh, 2006b). 

The security requirements framework (Chapter 5) was first described in (Moffett & 

Nuseibeh, 2003) (a technical report), substantially elaborated in (Moffett, Haley, & Nuseibeh, 

2004) (a technical report), and further refined in (Haley, Moffett, Laney, & Nuseibeh, 2006). 

Synopses of the ideas in Chapter 5 have appeared in (Haley, Laney et al., 2003, 2004a, b; Haley, 

Laney, & Nuseibeh, 2004c; Haley, Moffett et al., 2005; Haley, Laney et al., 2006a). Threat 

descriptions were introduced in (Haley, Laney et al., 2004c). 

Our work on security satisfaction arguments (Chapter 6) was first published in (Haley, 

Laney, & Nuseibeh, 2005) (a technical report), and substantially modified and elaborated in 

(Haley, Moffett et al., 2005; Haley, Laney et al., 2006b). 

We note that although the technical report (Moffett, Haley et al., 2004) was not peer 

reviewed, it has had an impact, as evidenced by being cited by (at least) He (He, 2005), Mead, 

Hough et al. (2005), and Redwine (2006). 

1.8 Structure of this Thesis 

This thesis comprises eight chapters. The first is this introduction. Chapter 2 provides 

background information relied upon in the following chapters. Chapter 3 presents related work, 

expanding upon the discussion in this chapter. Next, the three contributions are discussed, 

beginning in Chapter 4 with trust assumptions. Chapter 5 introduces our security requirements 

framework, describing the framework using a constructed example. A major part of the 

framework, our security satisfaction arguments, is presented in Chapter 6. Chapter 7 provides 

the industrial example described earlier, and Chapter 8 finishes with discussion, future work, 

and concluding remarks. 
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Chapter 2. Background 

Problem frames (Jackson, 2001) are used in this thesis to describe system context for security 

requirements, and to describe phenomena used in behavior specifications. This section presents 

some background information on problem frames, along with a discussion of requirements and 

specifications in a problem frames context. 

In addition, this chapter justifies the definitions of some terms used in this thesis, and 

provides some background material on parallel elaboration of requirements and architecture. 

2.1 Problem Frames 

Problem frames are used during problem analysis, providing mechanisms for describing the 

domains in a problem. When using problem frames, the analyst decomposes larger problems 

into a collection of smaller ones. These subproblems are later recomposed, providing the 

solution for the original problem. 

In a problem frames universe, a requirements engineer describes problems by describing the 

interaction of domains that exist in the world. The problem frames notation captures domains in 

a problem along with the interconnections between them. For example, assume that the 

requirements elicitation process for a box that protects documents from fire produces the 

requirement open the fireproof box when a door-open button is pushed. The elicitation process 

tells us that the stakeholders want a system consisting of (at least) a box, a door, and a button. 
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Figure 2-1 illustrates one set of domains that could satisfy the requirement: a basic automatic 

door system with three domains, two of which are given and one of which is to be designed. The 

first given domain, Door Mechanism, is the box’s door mechanism domain, capable of opening 

and shutting the box’s door. The second given domain, Person + Button, is the one requesting 

that the door be opened; for convenience this domain includes both the button to be pushed and 

the human pushing the button. The third domain, Control, is a designed domain, indicated by 

the two vertical lines in the box. It is the machine, the domain that will bridge the gap between 

the other two domains in order to fulfill the requirement that the door open when the button is 

pushed. The oval presents the requirement that the machine is to satisfy. 

In problem frames, every domain has interfaces, which are defined by the phenomena visible 

to other domains. Phenomena (e.g., events and signals) are visible: they can be observed. The 

problem frames notation shows the phenomena shared between two domains on the line 

between the domains by labeling the line (the ‘a’ and ‘b’ in Figure 2-1). The label refers to a set 

of phenomena on the interface. Phenomena are controlled by one of the domains on the 

interface; the controlling domain is indicated by an abbreviation in front of an exclamation 

mark. For example, in Figure 2-1, the interface between the Person + Button domain and the 

Control Machine is labeled ‘b’. There are two phenomena on the interface, ButtonDown and 

ButtonUp, both controlled by the Person + Button domain as indicated by ‘PB!’. The Control 

Machine controls the Boolean phenomena MotorOpen and MotorClose (turn on and off the 

 
Figure 2-1 – A basic Problem Frames diagram 
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motor) on the interface between the machine and the Door Mechanism. The Door Mechanism 

controls the phenomena DoorIsOpen and DoorIsClosed. 

One can think of domains as a set or as a class (a type). When a set, instances of the domain 

in the running system are members of the set, but might not all be the same type. This way of 

thinking is attractive in that it permits an object to be a member of multiple sets, which clearly 

happens in reality (a ‘person’ can be both a ‘user’ and an ‘administrator’). Unfortunately, 

sometimes we want to talk about a class of objects (objects with particular attributes & 

properties), not one of a set (e.g., a particular authenticated user). To solve this problem, one can 

think of a domain as a class, where all the attributes & properties of interest are defined by the 

class. When the system is realized (instantiated), objects that are instances of the domain classes 

interact with each other, and these instances can be named. The downside of choosing the class 

point of view is that objects can be instances of more than one class, creating something like 

multiple inheritance. In this thesis, we use both schemes, as appropriate to the situation. 

Requirements are optative. They describe desired behavior (phenomena: inputs, outputs, and 

states visible at their interfaces) instead of existing behavior (Jackson, 2001). Descriptions of the 

behavior of designed domains are both optative and indicative. A description is optative in the 

description where the domain is being designed, but indicative when the designed domain is 

placed into a system. Descriptions of the behavior of given domains are indicative; they 

describe an “objective truth” about the behavior of the domain. 

2.1.1 Requirements and Specifications 

According to Zave and Jackson (1997), a requirement is an optative description of what the 

system is to do. Requirements describe a desired effect in terms of phenomena visible in the 

world. Jackson (2001) describes a requirement as “the effects in the problem domain that […] 

the machine is to guarantee.” 

Again referring to Zave & Jackson (1997), specifications are about phenomena across all the 

domains in a problem. The specification of an individual domain is a description of the behavior 

of the domain in terms of the interplay of its phenomena, indicative and optative, visible at its 
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interface. The term interplay incorporates the notions of sequencing: stimulus, response, and 

causality. The specification of a system is the collection of domain specifications that together 

permit the fulfillment of the requirement(s). 

The distinction between requirement and specification is an important one. A requirement 

does not describe how a system is to be implemented, but instead describes what is desired by 

the stakeholders in terms of phenomena visible at certain domains in the real world. It is the 

specification that describes how, in terms of the phenomena of all the domains in the system, the 

requirement is fulfilled. For example, the requirement “given a temperature input in Fahrenheit, 

the system shall display that temperature in Celsius” is describing some input phenomena on 

one domain (probably a keyboard) and some output phenomena of another domain: the display; 

these are the requirement phenomena. The rest of the phenomena in the system exist to make 

the system produce its output requirement phenomena, given its input requirement phenomena. 

Correctness arguments use this correspondence between requirements and specifications. To 

show that a system correctly satisfies the requirement, one must show that the interplay of 

specification phenomena causes the requirements phenomena to occur at correct points. If the 

phenomena are described formally, then the correctness argument can be a proof. If the 

phenomena are described informally, the correctness argument is equally informal. 

It is worth noting that Jackson has recently moved from correctness arguments to adequacy 

arguments (2006), which are very similar to the satisfaction arguments described in this thesis. 

When asked about this shift1, Jackson explained that when the “real world” is involved, it is not 

possible to describe all possible behavior, especially in the face of failure, and therefore one 

cannot prove correctness. One instead ensures that an adequate number of cases have been 

considered, and argues why that set of cases is adequate. 

                                                      
1 Personal communication between the author and Michael Jackson. 
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2.1.2 Indicative vs. Optative Descriptions 

Indicative domain properties are normally expected to be known and constant; the same 

stimulus in the same context produces the same response. This is what Jackson meant by 

“objective truth” (2001). Optative domain properties are those one wants; they do not exist yet. 

Unfortunately, when reasoning about security one should put aside the convenient “indicative 

properties” concept and assume that all domain properties are optative, because one way an 

attacker can succeed is by perturbing behavior of domains thought indicative. Consider the 

pushbutton in the domain shown Figure 2-1; when the button is pushed, the circuit connected to 

the button is closed. This would seem to be an indicative property. Now put some confidential 

information in the box, and then consider the same button from the point of view of an attacker. 

The attacker might cut the wire, connect an alternate or second button to the wire, or put a 

circuit in the middle that analyzes the context of the button push and either passes it on or does 

not. The property can no longer be considered objectively true. It has become optative: what one 

wants to be true, or alternatively what should be true. 

Security requirements are optative, describing characteristics of the system that the 

requirements engineer desires to be true. The lesson learned from the above discussion is that, 

unlike functional requirements, security requirements should assume that indicative domain 

properties are optative, because a goal of an attacker might be to change the behavior of some 

indicative phenomena. A successful attack means one of two things: that phenomena exist that 

were not described in the problem, or that behavior (the specification, or interplay of 

phenomena) assumed to be indicative (to be true), is not. 

2.2 Definitions 

Software engineering, security requirements, and security engineering have vocabularies that 

share many terms. Unfortunately, the terms do not always have the same meanings. To help 

avoid confusion, this section presents how some of the terms are used in this thesis. 
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2.2.1 Security and Safety 

As said in the introduction, this thesis is about security requirements. One question that 

frequently arises is whether we consider safety when considering security. There is a very close 

relationship between security and safety requirements. Both deal with system failures that lead 

to harm. Both deal with analysis of the context to look for evidence about how failures might 

occur. Both add requirements to reduce the possibility of, or to mitigate the effects of, these 

failures. We did not wish to consider safety in this thesis, and therefore we needed to find a way 

to define, or scope, our efforts so that they did not include safety, but equally so that safety 

would fit in a structure that also includes our contributions. In other words, we needed to find 

compatible definitions of safety and security. 

Some authors say the difference between security and safety is intention (e.g., (Firesmith, 

2003a; Jonsson, 1998; Leveson, 1986)), and we use this definition. Safety concerns harm caused 

by accident, while security concerns harm caused intentionally by an attacker. Failures of 

security can easily lead to safety concerns; consider placing a bomb on an airliner. Equally, 

failures of safety can lead to security concerns; consider an accident involving a truck carrying 

unencrypted backup tapes. 

The use of intention as a discriminator is not universally agreed. For example, (Avizienis, 

Laprie, Randell, & Landwehr, 2004) defines security as “the absence of unauthorized access to, 

or handling of, system state.” The paper discusses the role of intention, but does not give it any 

particular emphasis. This differs from one of its predecessors, which recognizes that security is 

dominated by intentionally provoked faults (Laprie, 1992). The SafSec methodology (Lautieri, 

Cooper, & Jackson, 2005) combines safety and security, without introducing intention. The 

ITSEC defines security as “the combination of confidentiality, integrity and availability [of 

information]”  (Senior Officials Group - Information Systems Security, 1991: pg 115), a much 

more restricted view of security that does not include intention. 

There are several definitions for safety in the standards, and these definitions do not help 

disambiguate the terms. For example, Avizienis et al. define safety as the “absence of 
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catastrophic consequences on the user(s) and the environment” (Avizienis, Laprie et al., 2004), 

a definition that could easily include security-related items such as integrity. IEC 61508-4 

defines safety as “freedom from unacceptable risk” (CENELEC, 2002: pg 11), a definition that 

certainly includes security. Both of these definitions are made clearer by including intention as a 

differentiator. 

Although we recognize that using intention as the differentiator between safety and security 

is sometimes uncomfortable, we feel that the distinction being made between intention and 

accident is helpful. It assists with setting bounds on both the context and the mitigations. 

Consider the possibility of failure of some component in an aircraft, potentially causing the 

aircraft to crash. Under our definition, this is a safety problem and therefore not considered in 

our analysis. However, if the component could be provoked to fail, then we have a security 

problem: preventing the (intentional) actions that could provoke the failure. 

2.2.2 Asset, Threat & Vulnerability 

These three words are used throughout the security literature, but not always with the same 

meaning. In this thesis, we use the definitions used by Chivers & Fletcher in (2005) (quoted 

here): 

• Asset: a resource of value to an organization (e.g., hardware, software, data, people). 

• Threat: a potential harm that could occur to an asset. 

• Vulnerability: a weakness in a system that allows an attack to realize a threat. 

These definitions are consistent with those found in (NIST, 1995) and (Mead, Hough et al., 

2005). 

These definitions are rather different from some proposed elsewhere. One definition has 

threats confounded with attacks and/or attackers. For example, Firesmith in (2004) defines a 

threat as “a general condition, situation, or state (typically corresponding to the motivation of 

potential attackers) that may result in one or more related attacks.” ISO 15408, an information 

security standard, does not define the word ‘threat’, but it does characterize a threat by “A threat 
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shall be described in terms of an identified threat agent, the attack, and the asset that is the 

subject of the attack.” (ISO/IEC, 1999a: pg 45).  

For another definition, consider the definition in (Breu & Innerhofer–Oberperfler, 2005): “A 

Threat is defined as any event that can result in the violation of a Security Requirement.” Here, 

threats are defined in terms of security requirements, as opposed to defining security 

requirements in terms of threats. We do not use this definition because it leaves unsaid what is 

used to determine security requirements. 

The definitions we use have the advantage of clearly separating the concepts of asset, threat, 

attack, and vulnerability. One need not bring attackers and vulnerabilities into the discussion 

when considering what harm can follow some abuse of an asset. One can, but need not, 

speculate about the motivations of an attacker when considering whether a particular 

vulnerability would permit realization of some threat. 

The definitions are discussed further in Chapter 5. 

2.2.3 Validation & Verification 

As said in Chapter 1, this thesis is about obtaining adequate security requirements. Adequate 

requirements are testable, in that sufficient criteria are provided to establish that a system 

satisfies the requirements (e.g., the “fit criteria” in (Robertson & Robertson, 1999)). 

Establishing satisfaction of requirements is usually considered part of validation and 

verification, and therefore one prerequisite to accomplishing our goal is agreement on the 

definitions of the two terms; what validation and verification are. The purpose of this section is 

to present and justify the definitions we use for the terms. 

It is commonly held in the requirements engineering community that one should be able to 

determine whether a set of requirements accurately represent the goals/desires of the 

stakeholders, and to determine whether a delivered system satisfies the requirements. For 

example, one can determine whether the requirement When the user enters a temperature in 

Fahrenheit, the system shall display that temperature in Celsius is correct by asking the 
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stakeholders if this is indeed what they want the system to do. The constructed system is 

checked against the requirement by entering Fahrenheit values and seeing if the correct Celsius 

values are displayed. This process is an example of validation and verification, but it does not 

make clear which step is validation and which step is verification. 

Unfortunately, the literature does not provide a clear definition of the terms validation and 

verification. Boehm in (1984) informally defines validation as asking “are we building the right 

product”, and verification as asking “are we building the product right”, and Easterbrook in 

(1996) expands on these definitions, saying that “validation is concerned with checking that the 

system will meet the customer's actual needs, while verification is concerned with whether the 

system is well engineered”. The IEEE Standard for Software Verification and Validation (IEEE, 

1998) defines the words in a way that permits them to be used almost interchangeably, but the 

notes on the definitions give more precision, saying that validation is “the process of examining 

a product to determine conformity with user needs” and verification is “the process of 

examining the result of a given activity to determine conformity with the stated requirement for 

that activity” (pg 71). Caughlin, writing about simulation, defines the terms similarly to these 

notes (2000). Pemberton & Sommerville, in a paper about testing, use (and justify) similar 

definitions (1997). 

Another example of the use the terms validation and verification is found in (Soudah, Pilch, 

Doebling, & Nitta, 2004). Quoting the relevant paragraph: “V&V is the multi-disciplinary 

process of demonstrating credibility in simulation results. Credibility is built by collecting 

evidence that a) the numerical model is being solved correctly and b) the simulation model 

adequately represents the appropriate physics. The former activity is called Verification and 

requires intimate knowledge of the mathematical model representing the physics, the numerical 

approximation derived from that model, software quality engineering (SQE) practices, and 

numerical error estimation methods. The latter, termed Validation is accomplished by 

comparing simulation output with experimental data and quantifying the uncertainties in both. 

Broad knowledge of modeling and experimentation, augmented with a deep understanding of 

statistical methods, are necessary for Validation.” Here, verification is the process of ensuring 
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that the software correctly implements the mathematical model of the world, and validation is 

the process of ensuring that the model accurately represents reality. In this definition, the model 

is clearly an intermediate artifact between the goals (and possibly requirements) and the 

software. One validates that the model satisfies the stakeholders’ goal: that the model represent 

reality. One verifies that the model is satisfied by the software: that the software accurately 

implements the model. This usage is consistent with the Easterbrook quote in the above 

paragraph. 

Our definition of validation and verification is compatible with the examples in the above 

paragraphs. We first assume the existence of a hierarchy of activities; requirements are inferior 

to goals but superior to delivered software. Given this assumption, we define validation and 

verification by determining which direction in the hierarchy one is looking. We define 

verification as determining whether an activity in question is satisfied by the result of a 

hierarchically inferior activity. We define validation as determining whether an activity in 

question satisfies a hierarchically superior activity. 

To clarify, assume that some project has stakeholders (S) and a three-level hierarchy of 

constructed artifacts. Moving from outermost to innermost, level 1 is documented goals (G), 

level 2 is documented requirements (R), and level 3 is the delivered system (D). Verification is 

done by looking down the artifacts hierarchy: for example by checking whether R is satisfied by 

D. Validation is done by looking up the artifacts hierarchy: for example by checking whether R 

satisfies G. Our definitions are consistent with the above discussion, and have the added 

advantage (for us) of fitting into a hierarchy within which artifacts are constructed. 

Note that because of the imprecision in the way artifacts are described, one must be careful 

about assuming that validation and verification are transitive. Verifying that (S is satisfied by G) 

and that (G is satisfied by R) does not necessarily verify that (S is satisfied by R). For example, 

assume that the stakeholders want a system to support a manufacturing process that uses gold 

for some reason. Gold is determined to be an asset, and the security goal Protect gold from 

theft is added to the system. The goal does not include information about why there is gold in 

the system. Without that information, the goal could be operationalized by the requirement Gold 
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shall be buried in very deep holes. This requirement satisfies the goal, and the goal 

satisfies the stakeholder. However, the requirement would almost certainly not satisfy the 

stakeholder, because the requirement does not satisfy the business goal. 

2.2.4 Functional and Non-Functional Requirements 

Requirements are often separated into two categories: functional requirements that describe 

what a system is to do, and non-functional requirements that describe some characteristic or 

quality the system is to have2 ((Chung, Nixon et al., 2000) and many others). Functional 

requirements describe what a system does: they describe visible effects in the world that the 

system lives in. Jackson describes requirements as the interplay of phenomena that one wishes 

to be visible at interfaces of a particular set of domains (real world objects) implicated in a 

system (2001). One domain, the machine, orchestrates the communication between domains so 

that the interplay of phenomena is exhibited. The requirements are validated by checking with 

the stakeholders that the interplay produces what they wish. The requirements are verified by 

checking that the interplay takes place as specified.  

Non-functional requirements ((Chung, Nixon et al., 2000; van Lamsweerde, 2001) & many 

others), cover such areas as performance, stability, ease-of-use, and (traditionally) security. 

These requirements, also called quality requirements (e.g., (Firesmith, 2003b)), generally do not 

have clear criteria for determining if they have been satisfied; there is no clear mapping from the 

requirement to effects in the world (van Lamsweerde, 2001; Mylopoulos, Chung et al., 1992). 

Validation and verification are problematic for quality requirements because yes/no validation 

and verification measurement criteria are hard to come by. Because of this difficulty, one must 

decide if a requirement has been satisficed (Mylopoulos, Chung et al., 1992), or satisfied well 

enough, which opens the question of what well enough means. For example, it may be easy to 

produce a requirement that states clearly what the stakeholders desire (for validation) but is 

unclear about what the system is to do (for verification), or vice versa. Consider the 

requirement/goal the system shall be easy to use. This goal is easy to validate; the users can 
                                                      

2 NFR’s can also be requirements on the development process, but we leave that aside in this discussion. 
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quickly say “Yes, I want that.” However, the goal is very difficult to verify, because it says 

nothing about what ease of use is in the context of the system, or how one can know whether the 

system has achieved it. The goal could be changed to be the system shall conform to the 

Common User Access standards. It is much easier to verify that this goal is satisfied by the 

system, but most users would have difficulty confirming that a system conforming to that 

requirement would in fact be easy to use. Somehow, an original validatable goal must be 

translated into visible and measurable behavior in the context of the system. Only then can one 

verify that the system indeed has the required behavior. 

2.3 Parallel Elaboration of Requirements & Architecture 

The Twin Peaks model (Nuseibeh, 2001a, b) shows that the elaboration of requirements and 

architecture should proceed in parallel, each influencing the other. The model proposes a partial 

development methodology wherein requirements and architecture (where architecture includes 

implementation) are simultaneously elaborated and verified against each other, bound together 

by the specification process. The model extends the spiral method (Boehm, 1988) by making 

elaboration of requirements an explicit part of the spiral. The benefits derived from the model 

include earlier understanding of the problem(s) being solved because architectural constraints 

are discovered earlier, rapid turn-around, inherent recognition and incorporation of project 

management concerns such as IKIWISI (I’ll Know It When I See It), easier incorporation of 

reusable components such as COTS (Commercial Off-The-Shelf) products, and rapid change in 

requirements and technology (Boehm, 2000). 
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Figure 1 (originally in (Nuseibeh, 2001a), copied from (Haley & Nuseibeh, 2003)) illustrates 

how a project might move from idea to implementation while using Twin Peaks. The peaks 

represent the requirements and architecture artifacts. The further one moves down a peak, the 

more detail is present and the more complete the artifact is. The spiral line represents the 

specification process, which is itself not an artifact but the simultaneous application of various 

and distinct methods to elaborate requirements and implementation. 

The need for iteration between requirements and architecture is doubly true in the context of 

security requirements, because as was shown in the spreadsheet example in Chapter 1, security 

is a systems-level problem. One cannot accurately determine the security requirements without 

the context of the system, and the architecture of the system is part of its context. To illustrate 

the idea, consider a trivial functional requirement business proposals shall be stored 

electronically using a format defined by the customer. In addition, assume the existence of the 

general security goal business proposals are to be treated as company-confidential information. 

Without knowing the domains involved in the problem, how does one know how to keep the 

information confidential? One can postulate the existence of computers used to write and store 

the proposals, but cannot go much further. The designer could choose to put the machines in a 

 
Figure 2-2 – Twin Peaks 
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locked room, in which case the room key becomes a phenomenon in the problem and the 

security requirements must describe the constraints on obtaining and using a key. Alternatively, 

the designer might specify a client/server architecture in which the client machines are publicly 

accessible. In this case, the client machine domain can be physically accessed by anyone and the 

proposals are potentially visible where the client and server domains connect (the network). The 

security requirements must describe constraints on who can use the client machine and on who 

can see the information where the domains connect. 

When the requirements engineer attempts to build a correctness/satisfaction/adequacy 

argument for some requirement, it could be that an acceptable argument cannot be constructed 

because there is not enough information available from the context. The requirements engineer 

would then request the designers to intervene, making (or applying already made) design 

decisions appropriate for the level of information available, changing the context by changing 

and adding phenomena and possibly domains. The requirements engineer starts again with the 

new context, attempting to construct acceptable arguments. This iteration continues until an 

acceptable argument is made. 

It is highly likely that applying a security requirement to a problem will alter the problem, 

possibly by changing phenomena, adding or removing domains in the existing problem, or both. 

For example, the specification to fulfill a security requirement information shared between the 

client and server domain must not be accessible to anyone must be evaluated in terms of visible 

phenomena. The designer must assure either that information shared between the domains is not 

visible outside the problem or that seeing what passes between the domains does not reveal the 

information. Either way, the physical properties of the connection need to be described.  
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Chapter 3. Related Work 

Hindsight permits an examination of the literature using three lenses derived from the criteria 

listed in the Sections 1.1 – 1.3 of Chapter 1 of this thesis. Our first lens is the second criterion, 

assumptions about behavior: examining how context and assumptions are made explicit3. Our 

second lens is the first criterion, clarity: how security requirements are defined and their 

meanings understood. Our last lens is the third criterion, satisfaction: using design rationale and 

argument capture for security requirements verification. 

3.1 Context & Assumptions 

This section examines the literature using the first lens, asking how the system context and 

assumptions are made explicit. 

For a security breach to occur, an attacker must make use of some entry point into a system 

to get to the assets. Given that the attacker is in the real world, the entry point must also be a 

real-world domain in the system (in the large, not just software). If no entry points exist that an 

attacker can use, the system cannot be exploited. (Nor, probably, can it be used, but that is 

another problem).  

It is axiomatic that when an analyst constructs a context for a system, assumptions will be 

made about the behavior of domains in that context. Being a bit silly but making the point, even 

though the analyst believes that he or she is considering all the worst-case scenarios where all 

defenses are inexplicably breached, the analyst almost certainly (and implicitly) assumes that 

the computer running the software is not hostile. One must have a special mind set, such as the 

one described in Programming Satan’s Computer (Anderson & Needham, 1995), before 

                                                      
3 The second criterion is treated first to avoid some forward references. 
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everything would be assumed to be under the control of an enemy. On the other hand, the 

analyst might make implicit assumptions that are more problematic, such as “employees are 

always honest”. In addition to exploring context, this section examines the literature by asking 

whether a representation for context should facilitate explicit capture of trust assumptions; 

assumptions the analyst makes about trusting the stated behavior of domains. 

The section begins with a detailed look at context and assumptions in i* and its derivatives, 

then moves on to KAOS and SeDAn. It ends with a brief examination of other security 

requirements work. 

3.1.1 The i* Framework 

The i* framework (Yu, 1997; Yu & Liu, 2001) takes an ‘actor, intention, goal’ approach, 

where security and trust relationships within the model are modeled as “softgoals”: goals that 

have no quantitative measure for satisfaction. The i* framework incorporates the NFR 

framework, including related security work (Chung, 1993; Chung, Nixon et al., 2000). Liu et al. 

extended the framework to better support security and privacy by modeling the attacker as a 

malicious stakeholder (Liu, Yu, & Mylopoulos, 2003). Countermeasures, which are themselves 

(soft)goals, are added to thwart the attacker. 

The Liu et al. work focuses on the attacker as the primary point of analysis (Liu, Yu et al., 

2003). One finds vulnerabilities by asking what an attacker might wish to gain while playing 

some role, and then looking for ways that the attacker might achieve the wish. As i* is focused 

on the actor, it is difficult to explore side effects of an actor’s actions in the real world. For 

example, one cannot easily model implicit connections between actors formed because of an 

actor’s actions, such as leaving one’s password on a post-it note or the effects of a laptop being 

stolen. 

i* can be used to demonstrate the need for certain trust assumptions, specifically those that 

restrict which agents are permitted to play particular roles, and those that exclude the possibility 

of an agent exhibiting undesired behavior. There is, however, no convenient way to insert these 

trust assumptions into the model (beyond text annotations) without expanding the scope of the 
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analysis. For example, consider one of the countermeasures proposed in (Liu, Yu et al., 2003): 

“User Authentication Mechanism”. In the diagram, the countermeasure is a leaf task. The actors 

and mechanisms that support, provide, and rescind authentication credentials are not mentioned, 

but are clearly being trusted by the analyst to be correct. To make these trust assumptions 

explicit in the model, one must add the actors who administer authentication, a process that is by 

necessity highly recursive. 

The Tropos project uses the i* framework, adding wider lifecycle coverage. Tropos focuses 

on connecting agent-oriented architecture and development with i*, extending the i* model to 

describe the details of the agents’ behaviors (Castro, Kolp, & Mylopoulos, 2001). A formal 

specification language was added in (Fuxman, Pistore, Mylopoulos, & Traverso, 2001). 

Security, represented as constraints on the interactions between two agents, was later added 

(Gani, Manson, Giorgini, & Mouratidis, 2003; Mouratidis, Giorgini, & Manson, 2003), 

extending the specification language to express these constraints and agent interaction 

dependencies. Architectural styles beyond agent-orientation are also discussed (Mouratidis, 

Giorgini et al., 2003). Trust and trust delegation were added (Giorgini, Massacci, Mylopoulos, 

& Zannone, 2004; Giorgini, Massacci, Mylopoulos, & Zannone, 2005), along with appropriate 

extensions to the specification language. 

Although Tropos has significantly enhanced i*’s ability to represent security constraints and 

dependencies, and in particular confidentiality dependencies, it does not extend i*’s ability to 

represent trust assumptions made by the analyst about the real world. The authorization example 

described above also applies to Tropos; one finds authorization constraints and sub-goals in an 

early Tropos security paper (Mouratidis, Giorgini et al., 2003), but one cannot explicitly 

indicate that administration of the authorization information is trusted, beyond extending the 

goal structure to include analysis of credential administration. One reasonable position is that 

some trust assumptions are implicit in the definitions and conditions of the formal modeling 

language (as can be said for KAOS below). 

Other work has extended i* in related directions. Gans et al. add distrust and inter-agent 

communication (“speech acts”) (Gans, Jarke, Kethers et al., 2001). Actors in the system decide 
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dynamically to trust or to distrust each other. Yu and Cysneiros have looked at privacy (2002), 

exploring how privacy requirements fit into an i* model. Both papers are concerned with 

analyzing trust relations between actors/agents in the running system, as opposed to capturing 

the requirements engineer’s assumptions.  

Because i* and its derivatives do not model the real-world components of the system as it 

will eventually be built, certain classes of trust assumptions are difficult to make explicit. The 

best examples relate to unexpected connections between domains, such as information on paper 

passing through a mailroom, people hearing through walls, and security of backup media. Other 

examples can be found when looking at interactions between components on a system that are 

not i* actors. 

The conclusion one reaches is that although i* works well for early requirements analysis and 

for actor/agent-based system analysis, it does not sufficiently represent general context and trust 

assumptions for security requirements analysis.  

3.1.2 KAOS 

KAOS (Dardenne, van Lamsweerde, & Fickas, 1993; van Lamsweerde, 2001), a goal-

oriented requirements engineering method, uses obstacles to analyze security and safety (van 

Lamsweerde & Letier, 2000). An obstacle to some goal “is a condition whose satisfaction may 

prevent the goal from being achieved” (van Lamsweerde, 2004). A recent addition is anti-goals, 

a refinement of obstacles, to discover and close vulnerabilities (van Lamsweerde, Brohez, De 

Landtsheer, & Janssens, 2003; van Lamsweerde, 2004). One begins with a goal model for some 

system; the goal model includes a domain model expressed using temporal logic. Security goals 

for objects in the domain are enumerated using a catalog of general goals (e.g., confidentiality, 

integrity, etc.). One inverts these goals to express the goals of some attacker (anti-goals), and 

then looks for vulnerabilities in the original domain model that permit the anti-goals to be 

realized. 

As in i*, there are ways in KAOS to find and express some kinds of trust assumptions. One 

could argue that some expectations, which are terminal goals under the responsibility of non-
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software agents ((van Lamsweerde, 2004), referred to as assumptions in (van Lamsweerde, 

2001)), are expressions of trust assumptions, as the analyst is choosing to stop analysis at that 

point. Domain-specific axioms might also fall into the category of trust assumptions. For 

example, the authorized predicate described in (van Lamsweerde, 2004) is clearly depending 

upon knowing if an agent is an owner, a proxy, or a manager, but there is no expression of how 

it is known or managed, or what domain behavior permits it to be known. 

Using KAOS, one expresses security goals in terms of the vulnerability to be addressed. As 

noted by van Lamsweerde, not all vulnerabilities must be eliminated, but instead may be 

mitigated or ignored (van Lamsweerde, 2004). The choice varies with the context of the 

vulnerability – the level of harm being risked and the probability that the harm will occur. One 

creates goals that express the choices made for a particular vulnerability. Focusing on the 

vulnerability as opposed to the asset to be protected loses information explaining the 

provenance of the goal (the context of the vulnerability). Goal refinement further distances the 

goal from its source. This distance creates difficulty when considering whether the cost of 

satisfying a security goal in a particular context is justified by the risk presented by the 

vulnerability in that context. 

KAOS does not express context in terms of real-world domains, but instead expresses it in 

terms of goals, objects related to the goals, and actions needed to achieve the goals. Objects are 

not necessarily physical domains. Behavior is expressed in terms of logical pre- and post-

conditions on objects. The actual recognized and emitted stimuli (phenomena) that permit the 

post-conditions to be satisfied are not recorded. As such, KAOS is a level removed from the real 

world. As the attacker is firmly placed in the real world, there is a mismatch between what the 

attacker manipulates and what KAOS models. 

3.1.3 SeDAn 

The SeDAn (Security Design Analysis) method (Chivers & Fletcher, 2005), developed 

concurrently with (and independently of) the work described in this thesis, has many similarities 

with our work, incorporating an explicit notion of context and a definition of security 
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requirements as constraints. A SeDAn context is an information flow graph, mapping the flow 

of information assets from their source through a network of services running on a grid. The 

definition of ‘services’ includes the users of the services. Using an attack model, one looks for 

paths in the graph that attackers can exploit. Such “paths of attack” may be within a service 

(e.g., internal users), where services are connected (administrative or organizational 

boundaries), or where information is exposed to the external world. The goal is to show whether 

a path exists from an attacker to the information asset. Constraints (security requirements) are 

placed on services to block such paths.  

A SeDAn context is focused on information assets and software services running on a grid, 

using a UML description of the interconnection of services. The boundary of the system (it’s 

‘edge’) is the user interface, and analysis is limited to vulnerabilities within this boundary. For 

example, bribing a user is not considered directly, because the user is outside the system 

boundary (Chivers & Fletcher, 2005: pg 878). 

Using SeDAn, an asset and threat analysis is done to determine the risk (including both 

likelihood and impact) that a path of attack can be utilized. One makes a table of the assets and 

the security concerns that affect the assets, noting the impact of the violation of the concern. 

Next, one determines which assets might be available through a given path of attack and the 

likelihood that the path of attack can be utilized in the undesired way. Impact and likelihood are 

combined, resulting in a quantified value for risk. 

For risks considered serious enough, constraints are added that, when satisfied, will cause the 

path to be sufficiently blocked. The constraints are on deployment, system topology, behavior of 

a service, and external access. They act “as requirements for implementers … ” (Ibid: pg 882). 

SeDAn does not contain an explicit satisfaction argument for how the constraint sufficiently 

mitigates the risk, but does contain model checking to check that the system will satisfy the 

constraint. 

Chivers and Fletcher acknowledge that satisfying constraints can cause additional 

functionality to be added and that this new functionality “may include new assets and services, 
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and these in turn may have confidentiality or integrity concerns” (Chivers & Fletcher, 2005: pg 

887). However, they say neither how this iteration is structured within the process, nor how 

traceability back to the security concern that provoked the addition of functionality is 

maintained. 

3.1.4 Other Work 

He and Antón (2003) concentrate on privacy, working on mechanisms to assist trusting of 

privacy policies, for example on web sites. They propose a context-based access model. Context 

is determined using “purpose” (why is information being accessed), “conditions” (what 

conditions must be satisfied before access can be granted), and “obligations” (what actions must 

be taken before access can be granted). Their framework, like i*, describes properties desired at 

run-time, not the requirements engineer’s assumptions about the domains forming the solution. 

Security requirements have been added to SCR (Heitmeyer, 2001) and to the WinWin 

framework (In & Boehm, 2001). As with i* and KAOS, one can locate some trust assumptions 

in both SCR and WinWin by looking for where the analyst stopped. The implicit decision to 

limit the context almost certainly has some number of trust assumptions behind it. 

Several people have described techniques that assist with reasoning about security by 

postulating the existence of an attacker who attempts to exploit the system in a way that will 

cause harm. Sindre and Opdahl introduced the idea of misuse and misactors into use cases to 

identify potential security flaws in a system (2000). Their work concentrated on simplicity, 

using the diagrams as a communications tool and saying that “misuse diagrams must only be 

seen as a support for eliciting threats”. Alexander extended the relations over those presented by 

Sindre et al., adding mitigation and restriction (2002a; 2002b). McDermott et al. described 

abuse cases, concentrating on exploring the details of an exploit and documenting the route and 

expertise needed to be successful (McDermott & Fox, 1999; McDermott, 2001). All of these 

techniques employ use cases, an actor/action model, so they have many of the same 

representation problems as i*. In these cases, an analyst’s trust assumptions are implicit in the 

diagrams, and not made explicit. One can argue that the very choices of which cases to analyze 
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constitute trust assumptions, because the analyst is choosing which interactions are important. It 

is worth noting that although these techniques do not capture trust assumptions in some explicit 

way, they would be quite useful for testing validity of the satisfaction arguments built using 

trust assumptions. 

Srivatanakul et al. combined use cases with risk analysis techniques taken from safety 

(Srivatanakul, Clark, & Polack, 2004), specifically HAZOP (Kletz, 1999; McDermid, 

Nicholson, Pumfrey, & Fenelon, 1995). They extended the abuse and misuse case work 

discussed above ((Alexander, 2002a, b; McDermott & Fox, 1999; McDermott, 2001; Sindre & 

Opdahl, 2000)) by adding HAZOP ‘guideword’-driven analysis of use cases to find potential 

abuses. One uses the guidewords to find deviations for the elements in a use case (e.g., actors, 

associations, event flow, pre- and post-conditions). These deviations represent potential 

violations of “security properties” of a system. If a security property is (potentially) violated, the 

deviation represents a (potential) successful attack. One locates the vulnerabilities that were 

exploited, then takes appropriate steps to close or mitigate the vulnerabilities. The method, like 

misuse cases, abuse cases, and abuse frames (Lin, Nuseibeh, Ince et al., 2003), takes what might 

be considered a bottom-up approach; the methods locate vulnerabilities that lead to security 

requirements that, if satisfied, will ensure the closure of the vulnerabilities. If no vulnerabilities 

are found, then the satisfaction argument has been bolstered. Finally, the technique employs use 

cases and therefore has many of the same representation problems as i*. 

Some of the work in the aspect-oriented requirements engineering (AORE) community is 

related to identification of security requirements. Yu et al. proposed an extension to i* to model 

softgoals, including security softgoals, as aspects (Yu, Leite, & Mylopoulos, 2004). Rashid et 

al. propose that ideas from aspect-oriented software development can be used when mapping 

non-functional requirements onto functional requirements (Rashid, Sawyer, Moreira, & Araújo, 

2002; Rashid, Moreira, & Araújo, 2003). They start by identifying the non-functional 

requirements (NFRs) that affect more than one functional requirement, determine what the 

effect of the overlap is, then model the composition of the requirements. In their work, security 

is treated identically to other NFRs. Context and assumptions are not taken into account.  
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Brito and Moreira (2004) propose that non-functional requirements from an NFR catalog 

(Chung, Nixon et al., 2000), be integrated with functional requirements using a composition 

process. The composition process connects security goals with functional requirements and 

permits supplying a priority for satisfaction arguments, but does not aid with the construction of 

these arguments. None of this work incorporates capture of the assumptions made by a 

requirements engineer when specifying a system. 

3.2 Expressing Security Requirements 

This section examines the literature through our second lens: how security requirements are 

defined and their meanings understood. We look from the point of view that to be most useful, 

security requirements should have the following characteristics of functional requirements: they 

should be unambiguous, verifiable, and free of conflicts. In addition, given general security 

goals, there should be a clear pathway to finding security requirements. 

If the security requirements cannot be verified (recall that verification looks down the 

hierarchy, in this case to establish that requirements are satisfied by the system), then one 

cannot know if the system is appropriately secure. This problem often arises when security 

requirements are expressed in ambiguous or overly general terms, such as “the system must be 

secure” and “only authorized users can use the system.” Verifying the system against these 

requirements requires one to guess at their meaning. The developers must somehow determine 

what ‘secure’ means, who is a ‘user’, what users are authorized to do, and when they are 

authorized to do it. What is needed is a way of expressing security requirements that avoids 

these problems. 

The need for avoiding and resolving conflict in security goals and requirements can be 

illustrated by considering two stakeholder groups in a health care system: physicians and 

regulatory compliance officers. Physicians have a duty of care; they are morally and in some 

cases legally obliged to provide adequate care. They will demand from a system what they 

consider sufficient functionality and privilege needed to carry out their duties. We see from  

Anderson’s report (1996) that one privilege physicians frequently expect is to be able to discuss 
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a case with some other physician. However, privacy regulations require patient consent before 

disclosure of information report (Anderson, 1996; Mouratidis, Giorgini et al., 2003). Regulatory 

compliance officers are charged with ensuring the respecting of privacy regulations, meaning 

that physicians must not share information with other physicians until the patient gives his or 

her consent. We find here a conflict of duties (duty of care vs. duty of compliance) that will 

affect who has which privileges in a system. However, the system's requirements in this 

instance must be free of conflicts, because if not, the implementers may resolve the conflicts in 

potentially inconsistent and incorrect ways. The conflict between rival stakeholders must be 

resolved by the production of an agreed set of security requirements. 

3.2.1 Security Requirements as Security Functions 

It is common to express security requirements by describing the security mechanisms to be 

used. For example, ISO 15408 (ISO/IEC, 1999a, b, c), a security specification that is the ISO 

version of the Common Criteria (Common Criteria Sponsoring Organizations, 2006a, b, c), 

provides examples of security requirements of the form (somewhat paraphrased) “The […] 

Security Function (TSF) shall explicitly deny access of subjects to objects based on the [rules 

…]” (ISO/IEC, 1999b: pg 48), where “rules” appear to be a mechanism. Regarding encryption, 

one finds “The TSF shall distribute cryptographic keys in accordance with a [specified 

cryptographic key distribution method] that meets the following: [list of standards]” (Ibid: pg 

39). Again, a mechanism is being described. In addition, both examples say what the function is 

to do, not the purpose it is to accomplish. 

The NIST Computer Security Handbook states that “These [security] requirements can be 

expressed as technical features (e.g., access controls), assurances (e.g., background checks for 

system developers), or operational practices (e.g., awareness and training)” (NIST, 1995: pg 

80), in effect defining security requirements in terms of functions and practices. Other security 

guides imply that recommendations such as “Acquire Firewall Hardware and Software” (e.g., 

(Allen, 2001)) are requirements. 



  3.2. Expressing Security Requirements 

  49 

Defining requirements in terms of function leaves out key information: what objects need 

protecting and, more importantly, why the objects need protecting. Although both the ISO and 

NIST documents say that the underlying reasons why objects are to be protected come from the 

functionality of the system, they provide little guidance on how to connect the functionality to 

the security needs. Instead of describing when and why objects are to be protected, they describe 

what mechanisms are to be used to protect the objects. 

It should be noted that the ISO and NIST guides are excellent sources of state-of-the-practice 

security mechanisms. The requirements engineer would be well advised to consider the 

functions described in these documents as excellent pointers to areas in a system that could 

participate in security satisfaction arguments (see Chapter 6). 

3.2.2 Security Requirements as Non-functional Requirements  

Devanbu & Stubblebine (2000) remark that security requirements are a kind of non-

functional requirement. Kotonya and Sommerville (1998), when discussing non-functional 

requirements, in which they include security, define them as "restrictions or constraints" on 

system services. Similar definitions can be found in other textbooks. Rushby (2001) appears to 

take a similar view, stating "security requirements mostly concern what must not happen". 

Using the Tropos methodology, Mouratidis, Giorgini et al. state that "security constraints define 

the system’s security requirements" (2003). Chung explicitly defines information security 

requirements as non-functional requirements (Chung, 1993; Chung, Nixon et al., 2000). 

Firesmith defines security requirements as “a quality requirement that specifies a required 

amount of security […] in terms of a system-specific criterion and a minimum level […] that is 

necessary to meet one or more security policies.” (Firesmith, 2003a, 2004). This appears to be a 

form of constraint, an impression reinforced by an example he provides: “The [application] shall 

protect the buyer-related data […] it transmits from corruption […] due to unsophisticated 

attack [when] […] Buyer Buys Item at Direct Sale [to a level of] 99.99%.” 

The problem with these definitions is their lack of specificity and guidance for the designers. 

What “system services” are being constrained? What effect will the constraint have on the 
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functionality of the system? How can any eventual chosen constraint be validated to ensure that 

it accurately reflects the stakeholders’ wishes? Referring to Firesmith’s example, what is an 

“unsophisticated attack?” What does the measure “99.99%” mean? It could mean that if 10,000 

attacks are known, the developers can ignore one. Alternatively, it could be a way of saying 

“all” without actually saying it.  

One major problem with percentage-style quantification of security requirements is the 

binary nature of the majority of security attacks; in most cases, an attack works or it does not. If 

an attack does not work the first time, it probably will not work the second time unless the 

parameters of the attack or the system state are changed. Anti-intrusion measures such as 

account lockout help ensure that attacks following a failed attack attempt will have a lower 

probability of success. On the other hand, if the attack works once (the system is penetrated), 

then the attack will likely continue to work until the vulnerability is removed. Successful attacks 

can (usually) be repeated as often as the attacker wishes, and even shared amongst attackers4. In 

high-threat situations, a successful attack will almost certainly occur (Redwine, 2006: pg 80). It 

is difficult to know what the percentage quantification means in these cases. 

Although we agree with defining security requirements as constraints, we argue that two 

precisions are necessary: a more precise definition and representation of constraints, and a way 

of moving from business goals to constraints. 

3.2.3 Security Requirements from Privacy & Trust 

Some researchers look at security from the point of view that if an agent can trust that 

information it ‘owns’ is kept private, then security goals will be met. De Landtsheer proposes 

modeling which properties that agents, authorized or not, can know (De Landtsheer & van 

Lamsweerde, 2005). The Tropos project (Giorgini, Massacci et al., 2005 and several others) 

takes a similar view, but extended to include agents’ intentions and explicit trust delegation. 

                                                      
4 One example is “script kiddie” attacks, where an experienced attacker produces toolkits for inexperienced attackers to use. 
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Breaux Vail, and Antón (2006) extract privacy rights and obligation information from “policy 

documents” to assist with development of security requirements. 

These approaches work well in contexts and problems dominated by privacy concerns. They 

are less effective when considering vulnerabilities in a system context. They are also less 

effective in applications where privacy (c.f. confidentiality) is not the dominant concern. The 

example in Chapter 7 is one such case. Air traffic control is dominated by integrity and 

availability concerns; high confidence is needed that airplanes are where they say they are. 

3.2.4 Other Portrayals of Security Requirements 

Many authors implicitly assume that security requirements are identical to high-level security 

goals. Tettero et al are explicit about this, defining security requirements as the confidentiality, 

integrity, and availability of the entity for which protection is needed (Tettero, Out, Franken, & 

Schot, 1997). While this is a clear definition, in some cases it may not result in precise enough 

requirements. In the above example, both doctors and the administrators would probably agree 

on the importance of confidentiality, integrity, and availability of the clinical information, but 

they would disagree on the concrete security requirements that express those goals. The 

requirements need to be more explicit about who can do what, when. 

Some authors identify security requirements with security policies. Devanbu & Stubblebine 

(2000) define a security requirement as “a manifestation of a high-level organizational policy 

into the detailed requirements of a specific system. [… We] loosely (ab)use the term 'security 

policy' […] to refer to both 'policy' and 'requirement'”. Anderson (2001) is less direct; he states 

that a security policy is “a document that expresses […] what […] protection mechanisms are to 

achieve” and that “the process of developing a security policy […] is the process of 

requirements engineering”. Redwine (2006) reports that the “software system security policy is 

part of software system requirements placing constraints on system behavior”. The difficulty 

with security policies is their chameleon-like meaning. As the discussion above shows, the term 

can be used for anything from a high-level aspiration to an implementation. Therefore, without 
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accompanying detailed explanation, it is not satisfactory to define security requirements as 

security policies. 

Lee et al. (Lee, Lee, & Lee, 2002) point out the importance of considering security 

requirements in the development life cycle, but do not define them. ISO/IEC 15408 (ISO/IEC, 

1999c) does not define security requirements in its glossary. However, in one place, they are 

depicted as being at a higher level than functional requirements, but in another as "security 

requirements, such as authorization credentials and the IT implementation itself", which appears 

to be at too low a level. Heitmeyer (2001) shows how the SCR method can be used to specify 

and analyze security properties, without giving the criteria for distinguishing them from other 

system properties.  

A number of papers have focused on security requirements by describing how they may be 

violated. For example, McDermott & Fox (1999), followed independently by Sindre & Opdahl 

(2000) and elaborated by Alexander (2003), describe abuse and misuse cases, extending the use 

case paradigm to undesired behavior. Liu, Yu & Mylopoulos (2003) describe a method of 

analyzing possible illicit use of a system, but omit the important initial step of identifying the 

security requirements of the system before attempting to identify their violations. One could 

argue that Chivers and Fletcher (2005) are in this camp with SeDAn, as they focus on attackers 

and the paths they might take into a system. One consequence of these approaches is that they 

indicate what a system is not to do in specific situations, but not in the general case. General 

security requirements must be inferred from the list of undesirable situations. 

Van Lamsweerde (2004) describes a process by which security goals are made precise and 

refined until reaching security requirements; see section 3.1.2 for more detail. Antón & Earp 

(2001) use the GBRAM method to operationalize security goals for the generation of security 

policies and requirements, but do not define security requirements. 

Mead et al. in the SQUARE methodology (2005) describe security requirements as being at 

the system level or the software level. They do not define what requirements are, beyond saying 

that “Requirements are concerned with what the system should do”. They also introduce the 
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notion of “architectural constraints” that specify “how it should be done,” leaving open how one 

distinguishes between a constraint that a system use an existing authentication system and a 

requirement that the system support authentication in a given context. Our framework fits well 

within SQUARE, providing a pathway from goals to requirements, and making the 

requirements (or constraints) implied by the context clear. 

3.3 Use of Design Rationale and Argument Capture for Verification 

Our third lens, the use of design rationale and argument capture for security requirements 

verification, is used in this section.  

The work presented in this thesis is related to, and builds upon, research on design rationale 

and argument capture, on safety requirements analysis, and more generally on ideas behind 

problem domain analysis. 

3.3.1 Design Rationale 

Design rationale is principally concerned with capturing how one arrived at a decision, 

alternate decisions, or the parameters that went into making the decision (Lee & Lai, 1991). For 

example, Buckingham Shum focuses on how rationale (argument) is visualized, especially in 

collaborative environments (2003). Potts and Bruns (1988), and later Burge and Brown (2004) 

discuss capturing how decisions were made, which decisions were rejected, and the reasons 

behind these actions. Mylopoulos et al. (Mylopoulos, Borgida, Jarke, & Koubarakis, 1990) 

present a way to represent formally knowledge that was captured in some way, without focusing 

on the outcome of any decisions. Ramesh and Dhar (1992) describe a system for “capturing 

history in the upstream part of the life cycle.” Fischer, Lemke et al. (1996) suggest that the 

explicit process of argumentation can itself feed into and benefit design. Finkelstein and Fuks 

(1989) suggest that the development of specifications by multiple stakeholders who hold 

disparate views may be achieved through an explicit dialogue that captures speech acts, such as 

assertions, questions, denials, challenges, etc. The representation of the dialogue is then a 

rationale for the specifications constructed. The common element in all of the above work is the 
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capture over time of the thoughts and reasons behind decisions. Whether the decisions satisfy 

the needs is not the primary question. 

When analyzing security requirements, the ultimate goal is to convince a reader that the 

security requirements can be satisfied, and that nothing is omitted that could result in the 

requirements not being satisfied. The process used is relevant only as it relates to completeness. 

Optimality is not part of the argument. Of course, we make no claim that it is useless to have the 

history that led to the final arguments; such a history will certainly be useful if the arguments 

fail to convince, or if the situation changes. 

3.3.2 Safety Cases 

Kelly (1999) argues that “a safety case should communicate a clear, comprehensive and 

defensible argument that a system is acceptably safe to operate in a particular context.” He goes 

on to show the importance of the distinction between argument and evidence. An argument calls 

upon appropriate evidence to convince a reader that the argument holds.  

Attwood and Kelly (2004) use the same principles, taking the position that argument forms a 

bridge between requirements and specification, permitting capture of sufficient information to 

realize rich traceability. Combining the two ideas, argument for safety cases and using 

arguments for traceability, Kelly’s quote presented above is paraphrased as “a security 

satisfaction argument should communicate a clear, comprehensive, and defensible argument that 

a system is secure enough to operate in its context.” 

The techniques proposed by Kelly are not directly applicable to security without 

modification, primarily because the techniques are focused around objective evidence, 

component failure, and accident; rather than subjective reasoning, subversion, and malicious 

intent. 

3.3.3 Problem Domain Analysis 

Zave and Jackson in (1997), and Jackson in (2001), argue that one should construct a 

correctness argument for a system, where the argument is based on known and desired 
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properties of the domains involved in the problem. To quote Jackson, “Your [correctness] 

argument must convince yourself and your customer that your proposed machine will ensure 

that the requirement is satisfied in the problem domain.” This position is the same as Kelly’s, 

with the proviso that Kelly’s arguments focus equally on all domains, with no special emphasis 

on the machine. 

Correctness arguments apply to security requirements, with a significant distinction. It is very 

difficult to talk about correctness when discussing security. One can convince the reader that the 

proposed system meets the needs, but it is far more difficult to prove that the system is correct. 

The distinction between convince and prove (or show) is important. It is not possible to prove 

the negative – that violations of security goals do not exist – but one can be convincing that 

sufficient outcomes have been addressed. 

3.4 Chapter Summary 

The review of the literature shows that our three criteria for adequate security requirements 

are not yet adequately satisfied by existing work. To reiterate, our criteria are: 

1. Clarity: one must have a clear understanding of what security requirements mean, and their 

effects within the system context in which they apply.  

2. Incorporation of assumptions about behavior: security requirements must take into 

consideration an analyst’s implicit or explicit decisions to trust behavior of objects found in 

the system.  

3. Satisfaction: one must be able to determine whether the security requirements satisfy the 

security goals, and if the system can satisfy the requirements. 

Our contributions flow directly from a desire to satisfy all the criteria. To satisfy the first 

criterion, we propose a framework for security requirements engineering explicitly 

incorporating system context. To satisfy the second, we propose the use of trust assumptions in 

security requirements. To satisfy the third, we propose combined formal/informal security 

requirements satisfaction arguments. 
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Chapter 4. Trust Assumptions 

Recall that a system comprises not only software, but also all the diverse constituents needed 

to achieve its purpose. For example, a computing system clearly includes the computers, but 

also incorporates real-world elements such as the people who will use, maintain, and depend on 

the system; the physical and logical environment within which the system will exist; and any 

systems already in place. When operating in a systems context, the requirements engineer must 

determine which real-world elements are to be included in the analysis. The analyst must define 

the context within which requirements analysis takes place by selecting the domains (the 

aforementioned real-world constituents) that are considered pertinent (Jackson, 1995, 2001). In 

doing so, the analyst reduces the size of the context to those domains relevant to the problem.  

As explained in Chapter 1, one factor influencing an analyst’s choice about whether or not a 

domain is relevant to a system’s security, and therefore to be included in the context, is the 

analyst’s set of trust assumptions. Trust assumptions are explicit or implicit choices not to 

challenge some described characteristics of domains, and can have a significant impact on the 

security of a system. To repeat the example from Chapter 1, most analysts implicitly assume 

that the compiler is not a security risk; it would not occur to them to include it in the analysis. 

Thompson demonstrated that this assumption is not necessarily justified by showing how a 

compiler could introduce trapdoors into applications (1984). Thompson’s example and the other 

in Chapter 1 illustrate how the requirements engineer’s implicit trust of some domains in the 

environment can introduce unknown amounts of risk into the system. 

Although these examples demonstrate the need to capture and analyze trust assumptions, 

little exploration has been done on how to find, represent, and quantify them; and then to 

analyze their effect on the system under discussion. We correct this omission by first providing 

a better understanding of what trust assumptions are, and then by making explicit their place 
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within satisfaction arguments. This chapter provides the former, a better understanding, by 

examining trust assumptions as independent artifacts used in very informal argumentation. 

Chapter 6 presents the latter, putting them into the context of satisfaction arguments. 

4.1 Definition of Trust Assumptions 

We define a trust assumption as a choice made by a requirements engineer to depend upon a 

domain having certain properties, in order to satisfy a security requirement. The requirements 

engineer trusts the assumption to be true. These assumed properties act as domain restrictions; 

they restrict the domain in some way that contributes to the satisfaction of the security 

requirement. 

4.1.1 Purpose of Trust Assumptions 

The requirements engineer is responsible for constructing an argument that security 

requirements are satisfied – the satisfaction argument. In most cases, the satisfaction argument 

cannot be made without depending on domain properties that cannot be verified with the 

information available in the context. The requirements engineer has a choice: either add a trust 

assumption that asserts that the properties are valid, or expand the scope as necessary to verify 

the properties, which is a highly recursive process. By choosing to add a trust assumption, the 

requirements engineer ends the recursion and explicitly limits the scope of the analysis. 

To illustrate making the choice to expand the scope or adding a trust assumption, assume the 

existence of a security requirement stipulating that the computers operate for at least eight hours 

in the event of a power failure (an availability requirement). The requirements engineer, 

working with the designers and the stakeholders, can satisfy this requirement by adding backup 

generators to the system. Appropriate phenomena would be added so that the machine can 

detect the power loss, control the generators, detect going beyond eight hours, etc. In most 

situations, the requirements engineer can trust the manufacturer of the generators to supply 

equipment that does not intentionally permit an attacker to take control of the generators and 

prevent them from operating (a denial of service attack). The analyst trusts the behavior of the 
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generators, and adds a trust assumption to that effect. By adding the trust assumption, the 

requirements engineer does not need to include the manufacturer of the generators in the 

analysis. The analyst uses the trust assumption to limit the scope of the analysis. 

As explained above, trust assumptions contribute to the satisfaction of security requirements. 

There is not necessarily a one-to-one correspondence between a trust assumption and the 

security requirements satisfied. Several trust assumptions may be necessary to satisfy a security 

requirement (an and decomposition), any one of several trust assumptions may be sufficient to 

satisfy a security requirement (an or decomposition), or some combination of the two. In 

addition, one trust assumption may play a role in satisfying multiple security requirements. 

4.1.2 The ‘Trust’ in Trust Assumptions 

We must first define what we mean by trust in trust assumptions. We use a variant of the 

definition of trust proposed by Grandison & Sloman (2003): “[Trust] is the quantified belief by 

a trustor with respect to the competence, honesty, security and dependability of a trustee within 

a specified context”. In our case, the requirements engineer trusts some domain to participate 

‘competently and dependably’ in the satisfaction of a security requirement in the context of the 

problem. 

In the Grandison & Sloman definition, the quantification of trust represents the level of 

confidence that the trust assumption is valid. Said another way, the quantification represents the 

risk that including the trust assumption, and thereby limiting the scope of analysis, may not be 

justified. In this thesis, the quantification is binary; the trust assumption is thought to be valid, 

or it is not. 

The Thompson (1984) example in the introduction gives us an example of a trust assumption. 

An analyst’s (probably implicit) trust of the compiler vendor not to include trapdoor generators 

in the compiler may be misplaced. If the compiler has been compromised, then some number of 

vulnerabilities may exist, such as the existence of a universal password, denial-of-service traps, 

or information leaks. Successful attacks using these vulnerabilities will have some impact on the 

organization: they will cause harm. The organization must decide whether the risk presented by 
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the vulnerabilities that might come into existence if the trust assumption is not valid is sufficient 

to justify the time and expense of the expansion of the analysis required to verify the compiler.  

The risk presented by a trust assumption is not the same as the risk associated with a 

vulnerability that might exist if the trust assumption is not valid. The risk presented by a trust 

assumption measures how likely it is that the vulnerability might exist if the trust assumption is 

invalid. The risk associated with a vulnerability measures the likelihood that the vulnerability 

can be successfully exploited, along with the impact of a successful exploit. As the example in 

the previous paragraph shows, the two measures are independent. If a compiler has been 

compromised to modify the password checker of the login program (the case described by 

Thompson), the trust assumption is invalid and the risk of the existence of a vulnerability is 

high. However, if the login program is not used in a system, then the risk presented by the 

vulnerability is nil, regardless of the validity of a trust assumption stating that the compiler 

vendor can be trusted. 

A discussion of formal risk analysis is outside the scope of this thesis, and will not be further 

discussed. 

4.1.3 Representation of Trust Assumptions 

A trust assumption consists of the following information: 

• Identification of the dependent domain. The trust assumption restricts this domain. 

• Effect of the trust assumption. The trust assumption a) restricts instances of the domain to 

be instantiations of some class or members of some set, b) restricts phenomena on the 

interfaces of the domain, or c) some combination of the two. Note that phenomena 

restrictions can be an assertion that some phenomena will not appear on the interface, or 

will only occur in a specific sequence/interchange. 

• Narrative description of the restriction(s). If the trust assumption restricts the instances of a 

domain type, then describe the attributes of instances of the domain type before and after 

application of the restriction (in effect, a description of the subtype). If the trust assumption 
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restricts phenomena, then describe the restriction and its effect on the valid interplay of 

phenomena. At this point, when discussing the validity and effect of the restrictions in this 

section, the analyst should take the position that the trust assumption is valid.  

• Preconditions. Some trust assumptions may be considered valid only if some other 

conditions are true. Some examples might be the earlier application of some other trust 

assumption to the dependent domain and/or the existence of domains not otherwise 

included in the analysis. 

• Justification for the inclusion of the trust assumption. This is not a justification of the 

restrictions, but is instead an informal discussion of why the trust assumption should be 

considered valid. If there are risks associated with the trust assumption, they should be 

listed and discussed.  

• List of security requirements (the constraints) that this trust assumption satisfies partially 

or completely. A trust assumption participates in satisfaction of a security requirement is 

by appearing in a satisfaction argument for that requirement. 

4.1.4 Trust Assumptions as Domain Restrictions 

Trust assumptions either restrict instances of a domain to some subtype, restrict the 

phenomena that a domain can produce, or both. To illustrate restricting instances of a domain’s 

type, consider a company’s door security system. By restricting entrance to people who pass the 

system’s test (whatever that is), the system in effect changes the type of the domain from People 

to Employees. To illustrate restricting phenomena, consider the output of the balance enquiry 

function of an ATM. The analyst might assume that the ATM displays the information for the 

account indicated by the card, not some other account. The trust assumption is that no defects 

exist that would cause the ATM to display information for some other account. 
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4.2 Worked Example 

The Secure Electronic Transaction (SET) Specifications (Secure Electronic Transaction LLC, 

1997a, b, c) describe a set of mechanisms intended to provide an acceptable level of security for 

on-line purchasing. This worked example looks at incorporating the SET specifications into 

software to support cardholder-side payment authorization. There is one functional requirement 

(in the problem frames sense): Complete the Purchase. This example considers one asset, 

Customer Account Information (CAI), and one derived security goal Purchases shall be 

authorized. Several trust assumptions are derived during the analysis.  

To derive the trust assumptions, we first determine what actions might cause harm, then 

negate these actions to express the security requirements (the constraints). (Describing threats is 

described further in Chapter 5.) Two such action/harms are used in this example: exposure of 

cardholder account information could lead to financial loss (from the confidentiality concern), 

and unauthorized use of cardholder credentials could lead to financial loss (from the integrity 

concern). We next add security requirements (constraints) to the requirements:  

SR1: only authorized individuals may use the cardholder credentials. 

and  

SR2: only authorized users may see the CAI  

The trust assumptions needed to satisfy the security requirements will be described in a later 

section. 

4.2.1 SET Overview 

SET describes a series of operations between players in an electronic purchase transaction 

using a credit card. In SET, a cardholder requests a cryptographic certificate from a certificate 

authority (CA). The CA verifies that the cardholder has a credit card account with an issuer, and 

then supplies a certificate. The cardholder can subsequently use the certificate to make 

purchases from a merchant. The merchant uses a payment gateway to pass the transaction to the 

acquirer (the merchant’s bank) for collection. The acquirer normally operates the payment 



  4.2. Worked Example 

  63 

gateway. Figure 4-1 presents a simplified version of the SET “processing flows” (terminology 

from (Secure Electronic Transaction LLC, 1997c)), showing the players and the messages they 

interchange. The arrows represent the direction of the flow of a message. The numbers in the 

boxes indicate sequence. Several SET messages and fields that do not have a direct bearing on 

this discussion have been omitted from the diagram, in particular the obtaining of certificates 

and private keys, and the initial verification of cardholder information. In addition, the diagram 

shows the merchant using the CAI, which although optional in SET is the technique that the 

SET specifications claims will be the most often used. (Secure Electronic Transaction LLC, 

1997b: pg 14) 

4.2.2 SET-Identified Security Assumptions 

The SET specifications make the following security-related assumptions about the SET 

environment relevant to this worked example. They are relevant because they point us at 

vulnerabilities considered by the writers of the SET specifications. 

• SA1: The cardholder ensures that no one else has access to his/her private key. (Secure 

Electronic Transaction LLC, 1997c: pg 16) In particular, SET software vendors shall 

“ensure that the certificate and related information is stored in a way to prevent 

unauthorized access.” (Ibid: pg 46) 
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5: Authorize (CAI, AMT)

6: OK AUTH

10: Pay (CAI, MAI, AMT)

11: OK PMT

8: OK Purchase

3: Give (PI, pgCAI)
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1: Checkout (Certs)

Shop
9: Rqst Payment (TI, AMT)

7: OK AUTH (meCAI)

4: Authorize (PI, TI)

Merchant

12: OK PMT
Cardholder

Issuer
Certs: Public Key SET 
certificates

CAI: Cardholder Account 
Information
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pgCAI: CAI encrypted w/
pmt gateway key

MAI: Merchant Account 
Information

TI: Transaction Identifier

 
Figure 4-1 – Simplified SET processing flows 
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• SA2: Cardholder, merchant, and payment gateway machines are free of viruses and trojan 

horses, and are not susceptible to being hacked. (Secure Electronic Transaction LLC, 

1997c: pg 11) 

• SA3: Programming methods and the cryptographic system, and in particular, the random 

number generators, are of the highest quality. (Ibid: pg 16) 

• SA4: The merchant’s system stores account information in an encrypted form, and if 

possible off-line or behind a firewall. (Secure Electronic Transaction LLC, 1997b: pg 39) 

4.2.3 The Initial Problem Diagram 

There is only one requirement in this worked example and therefore only one problem 

diagram. The context does not include the shopping process, but instead focuses on the point 

where a purchase is completed. Figure 4-2 shows a first-cut problem diagram, built by 

considering the SET processing flows. 

Recall from the discussion at the beginning of this section that there are two security 

requirements to be satisfied: SR1: only authorized individuals may use the cardholder 

credentials, and SR2: only authorized users may see cardholder account information (CAI). 

CAI is made visible by the CAI phenomena in the problem diagram, and the asset cardholder 

credentials is stored in the machine. Our goal is to generate an informal argument that these 

security requirements are satisfied. 

Merchant 

Machine 
stores CAI 
+ priv keys 

Users 

 

Display 
results 

MA!checkout() 
ME!OK_purchase 
MA!give() 
ME!OK 

US!authorize 

MA!result() 

Authorize purchase 
- SR1: Only auth 

users may use 
creds 
SR2: Only auth 
users may see CAI  

 
Figure 4-2 – Purchase problem 
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By tracing the CAI through the problem diagram, one sees that it must reside in unknown 

form within the Machine domain. According to the SET specification, the CAI must be 

encrypted between the machine and the merchant. There is nothing in the problem description 

(problem diagram) that indicates that only the user or the merchant can see the CAI. One can 

say the same thing about cardholder credentials. We can say nothing about whether SR1 or SR2 

are satisfied. We use these observations, the requirements SR1 and SR2, and the security 

assumptions SA1-SA4 to make the following trust assumptions5: 

• TA1-1 – satisfaction of SR1: As the credentials are stored on the machine, and as there is 

no apparent way to limit who can access these credentials, SA1 forces us to assume that 

the domain Users in the problem contains only individuals authorized to use the 

credentials. 

• TA1-2 – satisfaction of SR1: The CAI and credentials are not visible outside the machine. 

(SA2) 

• TA1-3 – satisfaction of SR1: The generated symmetric encryption keys are crypto-

graphically secure. (SA3) 

• TA1-4 – satisfaction of SR1 and SR2: The merchant cannot know the cardholder’s private 

key, and therefore cannot see the CAI as it passes through to the payment gateway. 

The first trust assumption TA1-1, that the domain Users contains only authorized individuals, 

is clearly risky, making the argument that SR1 is satisfied very problematic. There is no 

information available in the context to justify the claim. The analyst should change the problem 

to eliminate the trust assumption and reduce the risk. A similar statement must be made about 

TA1-2, because nothing can be found in the context that allows the engineer to claim that the 

storage is secure. If the information can be read without supplying some credentials that are not 

stored on the machine, then the existence of viruses, spyware, and other programs/users make 

the trust assumption’s claim ludicrous. Vulnerabilities permitting realization of the threats still 

                                                      
5 The labeling TA1-n instead of TAn is used because we will make a second set of trust assumptions TA2-n later. 
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exist, and appropriate domains and phenomena must be added to close the vulnerabilities and 

satisfy the requirement. 

Verifying TA1-3 is probably not necessary, assuming that the cryptographic software comes 

from a company that the requirements engineer believes has verified its applications. If the 

engineer is uncomfortable with this belief, then a domain representing the encryption software 

company must be added to the problem, and then analyzed appropriately. 

TA1-4 serves to limit the scope of the analysis, stating that nothing on the other side of the 

merchant can expose CAI to the merchant. Unfortunately, the SET processing flows diagram 

(Figure 4-1, step 7) shows that the payment gateway can give the CAI back to the merchant. 

The trust assumption is invalid and must be removed. 

Because TA1-1 was rejected, a passphrase has been added to verify that the user is 

authorized. The passphrase is used to encrypt the CAI and certificate storage. Use of the 

passphrase and encryption protects the CAI against both viruses and other users of the machine. 

Spyware that can capture the entry of the passphrase is still a problem, one that is not further 

discussed in this thesis. Because the rejection of TA1-1 & TA1-4 caused the system to be 

modified, we do not look further at TA1-2. 
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Figure 4-3 presents the modified problem. The context has been expanded to include the 

payment gateway.  

Thinking about the satisfaction argument using the new problem diagram exposes the need 

for the following trust assumptions: 

• TA2-1 – satisfaction of SR1 and SR2: Users will not expose the passphrase, ensuring that 

only authorized individuals use the credentials (SR1) and that authorized individuals may 

see the CAI (SR2) 

• TA2-2 – satisfaction of SR2: The merchant implements the SET recommendations and 

securely stores the CAI. There is no practical way to bypass this security, regardless of 

storage medium (operational, backup, etc.) 

• TA2-3 – satisfaction of SR2: The merchant’s employees authorized to see the CAI will not 

reveal it. 

• TA2-4 – satisfaction of SR2: The CAI never appears in the clear on the merchant’s internal 

LAN – Local Area Network. 

• The same trust assumptions that apply to the merchant also apply to the payment gateway. 
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Figure 4-3 – Purchase problem (second try) 
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Figure 4-4 presents the solution along with the four trust assumptions. To reduce the 

complexity of the diagram, we do not show the phenomena or the trust assumptions applied to 

the payment gateway. The trust assumptions are represented diagrammatically by an arc from 

the dependent domain to an oval containing a short summary of the depended-upon properties. 

The risk presented by TA2-1, that the passphrase will not remain confidential, may or may 

not be acceptable. Personal experience indicates that it was not acceptable to at least one bank. 

When BNP (Banque Nationale de Paris) announced its SET implementation, the bank sent a 

smartcard reader to each customer who agreed to use SET. The user was required to know the 

passphrase, to insert the appropriate smartcard into the reader, and to know the PIN for the card. 

Learning the passphrase was not sufficient. One needed a second phrase (the PIN) and physical 

possession of the card. 

The remaining trust assumptions are problematic. There is no practical way for a 

requirements engineer to examine every merchant and payment gateway company, so the 

assumptions must be accepted at face value. 

The trust assumptions required to fulfill the security requirement might provoke a debate 

about whether a customer-side product based SET is worth constructing. Given that the CAI can 

be stored on the merchant’s machine, the difference between a SET solution and the ubiquitous 

solution based on SSL (secure sockets layer) is not large. Using SET, it is more difficult for a 

merchant to change an order, but a dishonest merchant would have no problem creating new 

non-SET orders charged to the customer. Dishonest merchants and employees could sell the 
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Figure 4-4 – Purchase problem (third try) 
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account information. Hackers could steal it. The requirements engineer can do nothing to 

mitigate the problems exposed by these trust assumptions. The stakeholders must decide 

whether the risks are acceptable. It is interesting to note that SET has been largely abandoned. 

4.3 Chapter Summary 

This chapter introduced one of our contributions: trust assumptions. We have provided an 

approach for using trust assumptions when reasoning about the satisfaction of security 

requirements. The approach uses the strong distinction between system requirements and 

machine specifications found in problem frames, permitting the requirements engineer to choose 

how to conform to the requirements. The trust assumptions embedded in the solution inform 

requirements engineers, better enabling them to choose between alternate ways of satisfying the 

functional requirements while ensuring that vulnerabilities are removed or not created. Finally, 

trust assumptions provide a foundation for making informal satisfaction arguments about the 

security of a proposed system. 

 The informal arguments presented in this chapter suffer from three flaws. The arguments 

have a very informal structure, and are not amenable to analysis. Justification of trust 

assumptions can introduce other trust assumptions, and this is not accounted for. Finally, there 

is no systematic exploration of the linkages between the argument and the trust assumptions.  

Our proposed security requirements framework, described in the next two chapters, addresses 

these problems by: 

• better defining security requirements and relating them to security goals. 

• placing security requirements in a framework that explicitly permits iteration and 

requirements replacement. 

• adding a formal security satisfaction argument that incorporates trust assumptions into the 

premises. 

• adding a recursive informal satisfaction argument that permits one to argue the validity of 

trust assumptions, perhaps by (recursively) creating other trust assumptions. 
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Chapter 5. A Security Requirements Framework 

The literature review in Chapter 3 and the discussion of trust assumptions in Chapter 4 

exposed several security requirements problem areas: 

• Multiple definitions of security requirements 

• Inconsistent and difficult to understand satisfaction criteria for security requirements 

• No structure for verifying that a system can satisfy the security requirements 

• No explicit inclusion of the analyst’s trust assumptions 

• A general lack of a clear pathway for deriving security requirements from business goals. 

 We propose a security requirements framework to address these problems6, facilitating an 

understanding of the elicitation, validation, and verification of security requirements and other 

artifacts by integrating the concepts of the two disciplines of requirements engineering and 

security engineering.  

The framework takes two concepts from requirements engineering: the concept of business 

goals that are operationalized into functional requirements while applying appropriate 

constraints, and the concept of satisfaction (or adequacy) arguments. From security engineering, 

the framework concept of assets, together with threats of harm to those assets. In our 

framework: 

• Security goals and security requirements aim to protect assets from harm. 

                                                      
6 The framework was first described in (Moffett & Nuseibeh, 2003) and substantially elaborated in (Moffett, Haley et al., 2004) 
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• Primary security goals are operationalized into primary security requirements, which take 

the form of constraints on the functional requirements sufficient to protect the assets from 

identified harms. Primary security requirements are, consequently, preventative. 

• Feasibility, tradeoff, and conflict analyses (Redwine, 2006: pg 81) may lead to the addition 

of secondary security goals, which will (eventually) manifest themselves as additional 

functional and/or secondary security requirements. Secondary security goals and 

requirements may call for detective or preventative measures, a possibility discussed 

further below. 

• Security satisfaction arguments show that the system can respect the security requirements. 

The framework assists with understanding the place of security requirements within the 

development of an individual application, along with the relationships between the security 

requirements and other artifacts produced during development. 

5.1 Framework vs. Process 

This thesis proposes a framework within which development processes might function. One 

might think of the framework as a set of ordered milestones, indicating by when certain artifacts 

are to have been produced. The framework says that one should produce X and Y, and that one 

must produce X before one can produce Y, but it says nothing about how one produces X or Y. 

The how would be a process: a set of steps that if followed should allow one to make the 

transition from X to Y. The distinction is important because most organizations have a process 

they follow, so imposing one would be difficult. However, a process can be fitted into this 

framework if the process produces visible functional requirements, and if the user of the process 

will produce context and problem diagrams along with the other artifacts already produced by 

the process. 

One difficulty with describing a framework is that many steps or outputs are abstract or 

unspecified. To overcome this difficulty, in this thesis we instantiate the framework using a 
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combination of Goal-Oriented Requirements Engineering (van Lamsweerde, 2001) and Problem 

Frames (Jackson, 2001), describing it in terms of a set of activities. 

5.2 Definition of Security Goals 

Security goals are derived from the business goals of the system (Allen, 2001). Some number 

of actors, operations, and objects will be required to satisfy the business goals. To paraphrase 

somewhat the introduction to this thesis, security goals arise when stakeholders establish that 

they wish to avoid harm to some objects in the context of the system, be they tangible (e.g., 

cash) or intangible (e.g., information), that have direct or indirect value. Objects valued in either 

way are called assets, and the stakeholders naturally wish to protect themselves from any harm 

that might come from abusing these assets.  

Harm may not be to the asset itself (direct harm), but instead may be a consequence of some 

misuse or abuse of the asset (indirect harm). Examples of indirect harm include damage to 

reputation caused by exposure of flawed hiring policies, loss of contracts caused by exposure of 

pricing or costing information, or loss of trade secrets through the theft of some newly designed 

widget. In other words, one is not necessarily protecting assets from harm, but is instead 

protecting against harm caused by abuse of assets. Consider the case where the asset is 

confidential information, such as the design for an unreleased product. Abusing the information 

by making it public does not harm the information, but future revenue of the company could be 

adversely affected. Now consider the case of the destruction of a building. One harm is direct: 

the cost of replacing the building. However, other harms are possible, such as (again) the loss of 

future revenue caused by the inability to do business. In this case, there are multiple harms, each 

with diverse risk and impact, which might require different protections.  

One set of security goals describe conditions that must be avoided in order to keep the level 

of harm to an acceptable level. For example, tangible assets might be destroyed, stolen, or 

modified; the harm is the loss of the asset itself (direct harm). Information assets might be 

destroyed, revealed, or modified; the harm could be the loss of the asset (direct harm) or the 

consequences of exposing the asset (indirect harm). 
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The security community has enumerated some general security concerns, labeling them with 

the letters C, I, A, and more recently a second A ((Pfleeger & Pfleeger, 2002) and other security 

textbooks): 

• Confidentiality: ensure that an asset is visible only to actors authorized to see it. 

Confidentiality is larger than ‘prevent read access to a file’. For example, it includes 

controlling visibility of a data stream on a network, and of papers on someone’s desk. 

• Integrity: ensure that the asset is not corrupted. Integrity is larger than ‘prevent write 

access to a file’, for example including ensuring that transactions that should not occur 

indeed do not, that the contents of backup media are not changed, that incorrect entries in a 

paper-based accounting system are not made, and data streams are not modified between 

their endpoints. 

• Availability: ensure that the asset is readily accessible to agents that need it, when they 

need it. A counterexample is preventing a company from doing business by denying it 

access to something important, such as access to its computer systems or its offices. 

• Authentication: ensure that the identity of the asset or actor is known. A common example 

is the simple login. More complicated examples include mutual authentication (e.g., 

exchange of cryptography keys), and intellectual property rights management. 

By connecting these general concerns to the assets implicated in a system, and then 

postulating actions that would violate these concerns (that would be an abuse of the asset), one 

can construct extended descriptions of possible threats to assets. These threat descriptions 

(Haley, Laney et al., 2004c) are phrases of the form performing action X on/to/with asset Y 

could cause harm Z. Threat descriptions permit a form of asset-centered threat modeling, and 

are represented by a three-element tuple: the asset, the action that will exploit the asset, and the 

subsequent harm. Threat descriptions are generated by enumerating the assets involved in the 

system, then for each asset, listing the actions that exploit the asset to cause direct or indirect 

harm. The action is derived from the security concern; it does not name a specific vulnerability 

or attack path. For example, one can imagine erasing (an action related to the integrity concern) 
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the customer records (the asset) of a company to cause loss of revenue (the harm). A set of 

security goals is found by negating the threat descriptions, which in goal-oriented requirements 

engineering terms makes them into prevent (or avoid) goals. 

Another set of security goals can be found by combining management control principles and 

application business goals. Management control principles include common security principles 

such as least privilege and separation of duties (NIST, 1995: pg 109). Application business 

goals will determine the applicability of management control principles to the system, for 

example by defining those privileges that are needed for the application, and excluding those 

that are not. An organization may already have done the analysis and published policies that 

apply to assets in a system. The security goal is a statement that the policies and/or principles be 

applied where appropriate in the system. 

Note that legitimate stakeholders may have conflicting security goals. The set of relevant 

security goals may be mutually inconsistent, and inconsistencies will need to be resolved during 

the goal analysis process before a set of consistent requirements can be obtained. 

 Looking at the goals of attackers could be useful when determining security goals for the 

system, for example when enumerating assets or quantifying harm, but we do not consider them 

a part, even negated, of the set of security goals. The goals of the system owner and other 

legitimate stakeholders are not directly related to the goals of attackers, because security is not a 

zero sum game like football. In football, the goals won by an attacker are exactly the goals lost 

by the defender. Security is different; there is no exact equivalence between the losses incurred 

by the asset owner and the gains of the attacker. To see this, look at two examples: 

• Robert Morris unleashed the Internet Worm, causing millions of dollars of damage, 

apparently as an experiment without serious malicious intent (Spafford, 1989). The 

positive value to the attacker was much less than the loss incurred by the attacked sites. 

• Many virus writers today are prepared to expend huge effort in writing a still more 

ingenious virus, which may cause little damage (screen message "You've got a Virus"). 
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Generally, there is no simple relationship between the gains of a virus writer and the losses 

incurred by those who are attacked. 

The consequences of security not being a zero sum game are twofold: The first is that the 

evaluation of possible harm to an asset can generally be carried out without reference to 

particular attackers; one needs only to determine that harm can be incurred. The second is that 

the goals of attackers cannot be solely used to arrive at the security goals of a defender to 

prevent harm; further consideration is necessary to determine whether and what harm is 

incurred if the attacker satisfies his or her goals. 

5.3 Definition of Security Requirements 

We define security requirements as constraints on the functions of the system, where these 

constraints operationalize one or more security goals.  

Security requirements operationalize the security goals as follows: 

• They are constraints on the system's functional requirements, rather than themselves being 

functional requirements. 

• They express the system's security goals in operational terms, precise enough to be given 

to a designer/architect. Security requirements, like functional requirements, are 

prescriptive, providing a specification (behavior in terms of phenomena – see Chapter 2 

Section 2.1) to achieve the desired effect. 

The fact that security requirements are constraints on functional requirements rather than 

separate functional requirements is important for validation of the functional requirements. 

Validating a set of functional requirements in the face of constraints is easier than validating 

requirements consisting of the original functional requirements and the additional functional 

requirements added for security. In the first case, one need check only that after the functions 

are constrained, they still do what they originally were intended to do. In the second case, the 

system designer decides how the requirements interact and how the interactions are realized. 

Only after design is complete can one check to see if functionality has changed beyond 
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acceptability. Adding constraints to particular functional requirements (ones where the assets in 

question are implicated) keeps interaction analysis a part of requirements engineering. 

5.4 From Security Goals to Security Requirements 

We propose an iterative hierarchy of security goals and security requirements. The first 

iteration produces primary goals and requirements that are derived from the business goals and 

functional requirements. These goals and requirements are primary in the sense that if the 

resulting system respects the primary security requirements, then the system will satisfy the 

primary security goals. 

Further iterations produce secondary security goals and requirements. They are added for one 

or both of the following reasons: 1) to enable construction of an acceptable satisfaction 

argument for the satisfaction of primary security requirements, or 2) to permit an acceptable 

feasible realization of the primary security requirements. Satisfaction arguments are discussed 

later in this chapter and more fully in Chapter 6. 

The term feasible realization takes into consideration technical feasibility, cost/benefit plus 

risk, and stakeholder tradeoffs (Redwine, 2006). It may be that there is no practical way to 

respect a constraint and thereby prevent the harm; destroying a computer room with an atomic 

explosion comes to mind. Perhaps stakeholders do not agree on the goals or requirements. Risk 

analysis may indicate that the cost of respecting a security requirement is excessive, in which 

case the analyst may decide to detect violation after the fact, and then both recover from and 

repair the breach. Availability requirements are a good example - many such requirements do 

not prevent loss of availability, but instead imply a recovery capability. For example, secondary 

security goals would be added to the system to require that backups be taken and to manage 

these backups. Analysis of the secondary security goals may lead to the addition of secondary 

security requirements. This is, of course, a recursive process. 

Secondary security goals and security requirements are not secondary in terms of importance, 

but are instead secondary because they exist to enable satisfaction, to an acceptable level, of the 

primary and hierarchically superior secondary security requirements.  
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Secondary security goals can provoke the modification of existing functional requirements, 

or the addition of new functional requirements. This will occur when satisfaction of the 

secondary security goal requires addition of new management capabilities (e.g., management of 

authentication mechanisms), alteration of system-level workflows, or addition of new assets that 

the system must accommodate in some way. 

It is very important to note that secondary security goals and requirements supersede the 

primary security requirements, and can change the context and behavior of the system. For 

example, choosing to use attack detection instead of prevention implies that the primary security 

requirement will not be completely satisfied, as the attack will not be prevented. The choice 

means that the secondary goals and associated security requirements are considered suitably 

equivalent to the primary security requirements; they cover and replace (but do not delete) them. 

The decision to use detection instead of prevention could also change the behavior of the system 

because of the addition of domains and phenomena to facilitate detection. 
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5.5 Security Requirements and Context 

We reiterate that security requirements are applied in the system context, which is larger than 

the software. A security requirement can affect many parts of the system, some completely 

outside the software to be constructed. A variant of Jackson’s problem frame diagrams 

(Jackson, 2001) is used to represent the system context. To refresh the reader’s memory, the 

sample problem diagram from Chapter 2, Section 2.1 is reproduced here as Figure 5-1. The 

boxes are domains. Lines connecting the boxes represent interfaces, which are labeled with 

lower-case letters. The phenomena on the interfaces are listed as a set with the appropriate label. 

The domain controlling a given phenomenon is indicated using a letter or letters in front of an 

exclamation mark (‘!’). 

We chose problem frames to represent the context because problem frames permit us to 

incorporate behavior specification of real-world domains at a level of formality ranging from 

none to very. The behavior specification is necessary for constructing the satisfaction arguments 

we propose. We are not claiming that use of problem frames is necessary. We are not, however, 

aware of a better substitute. 

 
Figure 5-1 – Example Problem Diagram 
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5.6 Development Artifacts and Dependencies 

All system development processes have recognizable stages that produce artifacts. 

5.6.1 Core Artifacts 

Core artifacts are successively closer representations of a working system. They are ordered 

in the abstraction hierarchy shown in Figure 5-2, progressing from the most abstract to the final 

concrete working system. At early stages, core artifacts are typically documents or prototypes. 
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Figure 5-2 – Security Requirements Core Artifacts (Class diagram) 
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The final core artifact is the working system itself, consisting of a combination of physical and 

software items.  

Two sets of core artifacts are of most interest to this thesis. On the mainstream requirements 

engineering side, one finds descriptions of goals, requirements, and the system (in the large) 

context & architecture. On the security engineering side, one finds assets and control principles. 

5.6.2 Support Artifacts 

Support artifacts are artifacts that help to develop, analyze, or justify the design of a core 

artifact. They may include formal analysis, informal argument, calculation, example or counter-

example, etc. They are by-products of processes, whose aim is to help produce verified and 

valid core artifacts. 

5.6.3 Dependencies between Artifacts  

There are dependencies in the artifact hierarchy. For example, an operationalized requirement 

is dependent upon a higher-level goal from which it has been derived, because alteration of the 

goal may cause alteration of the requirement. We call this kind of dependency hierarchical 

dependency. 

There is also a reverse kind of dependency: feasibility. If it proves impossible to implement a 

system that sufficiently satisfies a requirements specification, then this will force a change in the 

goals or requirements. The higher-level artifact is dependent on the feasibility of the artifacts 

below it in the hierarchy. 

These dependency relationships have an important implication for the structure of 

development processes. If an artifact is dependent upon the implementation of another artifact 

for its feasibility, then if the implementation is not feasible, there must be an iteration path in the 

process back to the ancestor from its descendant. 
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5.7 Framework Overview 

Figure 5-3 shows an ordered set of activities for moving from business goals to security 

requirement satisfaction arguments. Boxes in the figure represent activities that produce 

artifacts. Typically, a box in the figure has two exits, one for success, and one for failure. 

Failure can be one of two kinds. The first failure kind is that it is not feasible to create a 
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Figure 5-3 – Security Requirements Process Overview (Activity Diagram) 
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consistent set of the artifacts called for by that activity. The second kind is that validation of the 

artifacts against a higher level – such as validation that security requirements satisfy security 

goals – shows that they fail to meet their aims. For example, one might be unable to construct a 

set of validated functional requirements from the business goals. Alternatively, one might fail to 

construct adequate security requirement satisfaction arguments. Iteration may cascade upwards 

if the problem cannot be resolved at the preceding step.  

There are four general stages in the activity diagram. Although one could describe these 

stages in terms of the artifacts produced, along with the ordering between them, it is clearer to 

describe them in terms of what is the goal of the activities in each stage. The activities are: 

• Stage 1: identify functional requirements 

• Stage 2: identify/revise security goals 

• Stage 3: identify/revise security requirements 

• Stage 4: verify that the security requirements can be satisfied by the system, by 

constructing satisfaction arguments. 

Each stage is discussed in more detail below. 

5.7.1 Stage 1: Identify Functional Requirements 

The only requirement the framework places upon the development process is that the 

engineer produce problem diagrams as described in Chapter 2 Section 2.1. How the 

requirements engineer gets to this point is open. 

5.7.2 Stage 2: Identify/Revise Security Goals 

There are three general steps required to identify the security goals: identify candidate assets, 

select the management principles to apply, and then determine the security goals. The result is a 

set of security goals, which are validated by ensuring that the business goals remain satisfied. 
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The first iteration through this stage results in the generation of primary security goals. 

Subsequent iterations result in secondary security goals, either because of asset analysis or 

because they were passed up from a temporally previous step, which are traceable, perhaps 

through multiple levels and through security requirements, to the original, primary, security 

goal(s). 

5.7.2.1 Identify Candidate Assets 

The goal of this step is to find all the objects in the system context that might have value, 

direct or indirect. In general, assets consist of all the information objects stored in or accessed 

by the system and any tangible objects such as the computers themselves. An object has direct 

value when the potential harm described in a threat is to the object itself. An object has indirect 

value if realizing a threat involving that asset causes harm somewhere else, such as to revenue, 

to costs, or to reputation. An object can have both direct and indirect value; when money is 

taken from a bank, the bank both loses the money and has its reputation harmed. 

One potential asset might contain, or enclose, other potential assets. A good example is a 

database that contains individual information assets. Another example is backup media, which 

can contain any number of information assets. 

5.7.2.2 Select Management Principles 

The functions that the system is to provide must be compared to the management principles 

that the organization wishes to apply. These principles might include (not intended to be an 

exhaustive list): 

• separation of duties (NIST, 1995: pg 109) – dividing roles and responsibilities to ensure 

that no one person has sufficient privilege to both start and complete important 

transactions. 

• least privilege (Ibid) – ensuring that a person has only what is required to do his or her job, 

in both privilege to know and privilege to do. 
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• audit trails (ISO/IEC, 1999b: pg 181; NIST, 1995: pg 213) – recording information about 

events of potential security interest, such as who did what, when. 

• Chinese wall (Brewer & Nash, 1989) –not permitting operations if a potential conflict of 

interest exists, such as an analyst giving advice to both company A and competitors of 

company A. 

The sector the system is being designed for may have standard management principles, such 

as no outside network connections, or no removable media capabilities on any computer. In 

addition, the organization might have already done a harm/risk analysis and developed 

organization-wide security policies for asset types. Which global policies to apply within the 

system under consideration must be identified and fed into the next step. 

5.7.2.3 Determine/Revise Security Goals 

When developing security goals, one should determine whether a harm analysis must be done 

for the assets. If the analysis has been done elsewhere (e.g., organization-wide policies) and if 

the assets are covered by the policies, then a list of security goals is generated by applying the 

management principles to the assets and business goals of the system. The result is a set of 

achieve goals with forms similar to “achieve Separation of Duties when paying invoices” or 

“audit all uses of account information.” 

If the analysis done elsewhere is not considered sufficient, one should do a harm analysis. In 

general, harm results from the violation of one or more of the security concerns described in 

Section 5.2. For information assets, these concerns are confidentiality, integrity, and 

availability. The concerns are similar for tangible assets: exposure, modification, and 

deprivation (theft or destruction). These concerns are used to enumerate the threat descriptions. 

One asks questions of the form “what harm could come from violating the [insert concern here] 

of [insert asset here]?” Answers to these questions are threat descriptions, which are represented 

as tuples of the form {action, asset, harm}. 

Threats may have a time element, stating that the harm will occur only if the violation occurs 

before or after some point, or within some interval. For example, a company’s earnings report is 
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confidential (and therefore valuable) only up to the moment it is made public. The time element 

is important when looking for and countering vulnerabilities, as it gives an indication of how 

severe a given vulnerability is and what measures are appropriate for countering the 

vulnerability. 

It is worth noting again that an object might not have any value in itself, but instead is valued 

by the harm caused indirectly to something else. For example, information about the amount of 

money paid to redecorate the company president’s office has no intrinsic value, but may be 

highly valued because exposing the figure could damage the reputation of the company. In other 

words, when evaluating threats (how assets are associated with harms), one must look for direct 

and indirect effects. 

5.7.3 Stage 3: Identify/Revise Security Requirements 

Recall that we define security requirements as constraints on functional requirements that are 

needed to satisfy applicable security goals. To determine the constraints, we must determine 

which security goals apply to which functional requirements, which means we must know 

which assets are implicated in fulfilling a particular functional requirement. We use Jackson’s 

problem diagrams (Jackson, 2001) for this purpose; these diagrams describe the system context. 

We do not attempt to identify a particular problem class, but instead describe domains, their 

interconnections, shared phenomena, and requirements into a system problem diagram. 

A simple example of a functional requirement decorated with such a constraint is: 

The system shall provide Personnel Information only to members of Human 

Resources Dept. 

The constraint ("only to …") is attached to the function ("provide Personnel 

Information"); it makes sense only in the context of the function. One might also impose 

temporal constraints: 

The system shall provide Personnel Information only during normal office 

hours 

and complex constraints on traces, for example the Chinese Wall Security Policy, (Brewer & 

Nash, 1989): 
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The system shall provide Personal Information only to any person who has 

not previously accessed information about a person in a different 

subsidiary. 

Availability requirements might need to express constraints on response time: 

The system shall provide Personnel Information within 1 hour for 99% of 

requests. 

Note that this availability requirement differs only in magnitude from a Response Time quality 

goal, which might use the same format to require a sub-second response time. 

Once a set of security requirements has been developed, one must validate that the security 

requirements satisfy the security goals. This would be done using satisfaction arguments 

appropriate to the level of formality used to describe the goals. Given that goals are often 

written in plain text, the arguments could have a form similar to our inner arguments (see 

Section 6.1.2). How these arguments are expressed is left open to the designer of the process to 

be used, and not defined within our framework.  

In the same fashion as security goals, the first iteration through this stage results in primary 

security requirements. Subsequent iterations generate secondary security requirements. 

5.7.4 Stage 4: Verify Security Requirements against System Context  

It is important to verify that the security requirements are satisfied by the system as described 

by the context. We propose the use of formal and structured informal argumentation for this 

verification step: to convince a reader that a system can satisfy the security requirements laid 

upon it. These arguments, called satisfaction arguments and discussed more completely in 

Chapter 6, are in two parts. The first part, the outer argument, consists of a formal argument to 

prove a system can satisfy its security requirements, drawing upon claims about the domains in 

a system, and assuming the claims are accepted. The second part, the inner argument, consists 

of structured informal arguments, supporting the claims made in the formal argument about the 

system’s behavior and characteristics. Building on our understanding of security requirements, 

the satisfaction arguments assist with identifying security-relevant system properties, and 

determining how inconsistent and implausible assumptions about them affect the security of a 

system. 
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Stage 4 begins by verifying that the functional requirements, as constrained by the security 

requirements, remain satisfied by the system as described by the system context. Once the 

functional requirements are shown to be satisfied, the security requirements themselves are 

verified by construction of the two-part argument described above. If it proves impossible to 

construct valid arguments, the context is revisited. If necessary, secondary security goals are 

added to correct problems, and the context is revisited. If this turns out to be infeasible, it is 

necessary to return to the beginning, revisiting the business goals. See the next section for 

additional details. 

5.8 Iteration 

One reason that an analyst may fail to construct a convincing satisfaction argument is that 

there is not enough information available to justify the claims (trust assumptions) made. For 

example, to justify a claim that users are authenticated, there must be some phenomena 

exchanged between the user and the rest of the system. The choice of phenomena and behavior 

is a design decision that may have a significant impact on the system architecture and context. 

For example, it is possible that architectural choices are imposed that extend the context to 

include all of IT management. For these reasons, the framework assumes that the process 

includes Twin Peaks requirements/design iterations (see Chapter 2 Section 2.3), asking the 

designers to add more detail into the system context so that claims can be justified. These 

iterations move from stage four to stage one, and from there back through the activities. 

The details added during a requirements/design iteration may require new functions to be 

added to the system, thus generating new functional requirements. Continuing the authentication 

example from above, assume the designers choose a retinal-scanning authentication technique. 

The designers add domains and phenomena to the context to describe how authentication takes 

place from the point of view of the user (in problem space). However, one cannot necessarily 

stop at the addition of phenomena. The authentication system must be managed. New assets 

have been added to the system, for example the retina description information. New domains 

have been added: for example the administrators and the retinal scanners. New goals have been 
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added to the system: assure that the functional additions serve their purpose. These additions 

could easily have an impact on system security, precipitating the addition of new security goals, 

or changing existing ones. 

When the requirements engineer or designer alters the context, they (might) add secondary 

security goals to the system to ensure that the preconditions or consequences of the alterations 

become part of the requirements for the system. A new requirements and asset analysis must be 

performed. Continuing the authentication example, a goal similar to manage authentication 

database would be added in stage 4. The process would then restart in stage 1 with a reanalysis 

of the context and functional requirements, to understand the consequences of the new goal. 

New assets (e.g., the authentication data) would be found in stage 2, and then new security goals 

to protect the assets and new security requirements to constrain functional operations wherever 

the new asset appears would be added. 

Another possibility is that the requirements/design iteration will establish that there is no 

feasible way to satisfy the security requirement(s). In this case, the designers and the 

stakeholders must come to an agreement on some acceptable alternative, such as a weaker 

constraint, attack detection, and/or attack recovery. They would add appropriate secondary 

security goals to the system, probably resulting in new secondary security requirements. The 

resulting secondary security goals and requirements cover the ones that were not feasible. As 

the new secondary goals and requirements are considered suitably equivalent to the originals, 

satisfying the new ones is considered to satisfy the originals. 

Clearly the ‘secondariness’ of any goals added must be remembered. If the hierarchically 

superior (‘more primary’) security requirement is changed, then the secondary security goals 

may need changing. For example, if authentication became unnecessary, then the manage 

authentication database goal should be removed, with the consequential removal of derived 

functional requirements and assets. 

Finally, it is possible that no feasible way to satisfy a security requirement exists, and no 

agreement can be reached on alternatives. In this case, one must return to the original business 
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and quality goals of the application, modifying the initial conditions to change the assets 

implicated in or the security goals of the system. Alternatively, one might decide not to build the 

system. 

5.9 Worked Example 

We use an example of a Personnel Information display system to illustrate the framework. 

The example begins in this chapter, working through stages 1 through 3, and then continues 

with stage 4 in Chapter 6. We begin by stating the business goals for a simple system. Next, we 

present the functional requirements, and then derive the system security requirements by 

applying the organization’s security goals to the functional requirements. 

Where appropriate, we omit from the discussion processes that are not part of the framework. 

5.9.1 Stage 1: Identify Functional Requirements  

We begin this example assuming that the work in this stage has already been carried out. The 

assumption is that the business goals have been elicited and that there is only one goal: 

BG1: Provision of people's personnel information to them. 

We further assume that the stakeholders agree that there is one functional requirement: 

FR1: On request from a Person (instance of People), the system shall 

provide HR data (persData) for a specified payroll number (persNumber) to 

that Person. 

 
Figure 5-4 – Initial HR problem diagram 
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Figure 5-4 shows the problem diagram for the requirement and context. There are two 

phenomena of interest. The first, U!persNumber, is the user’s request for personnel information. 

The second, M!persData, is the information returned by the request. 

5.9.2 Stage 2: Identify/Revise Security Goals 

Discussion with the stakeholders shows that, ignoring physical assets such as the computers 

and the buildings, there is only one asset implicated in the system: persData, an information 

asset. 

We now list the threat descriptions (action on asset to cause harm). Actions that might 

cause harm that can be done to persData are exposure (loss of confidentiality), alteration (loss 

of integrity), and denial of service (loss of availability), resulting in various harms. Some 

possible threat descriptions are: 

Confidentiality threat descriptions: 

{unauthorized exposure, persData, expense of privacy violation lawsuit)} 

{unauthorized exposure, persData, expense of discontented employee} 

Integrity threat descriptions: 

{unauthorized alteration, persData, expense of salary underpay lawsuit} 

{unauthorized alteration, persData, expense of excess salary} 

{unauthorized alteration, persData, expense of information restore} 

Availability threat descriptions: 

{~available, persData, expense of late salary payments} 

{~available, persData, expense of discontented employees} 

{~available, persData, expense of unfiled government-mandated reports} 

The system owner considers all of these threat descriptions to represent significant risk, and 

therefore wishes to avoid them.  

The confidentiality threat descriptions give rise to the security goal  

SG1: prevent unauthorized exposure of PersData 

Likewise, the next integrity threat descriptions give rise to the goal 

SG2: prevent unauthorized alteration of PersData,  

The availability threat descriptions give rise to  

SG3: prevent denial of access to PersData by authorized persons. 
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5.9.3 Stage 3: Identify/Revise Security Requirements 

The next step is to derive security requirements from the combination of business goals and 

security goals. Recall that security requirements constrain the function called for by a functional 

requirement that operationalizes a business goal. Investigating the word authorized in SG1, the 

requirements engineer determines that an individual is permitted to see only his or her own data. 

Furthermore, assume that the data for a person contains certain statistical information such as 

the difference of that person’s salary from the mean salary of the department. It is possible that 

this information will expose other employees’ salary because of lack of sufficient statistical 

aggregation (e.g. a small department), and therefore the system must not display this 

information to the employees. This complexity leads the stakeholders to agree that personnel 

information is to be interpreted by a trained HR staff member, and not be exposed directly to the 

employee. From these choices and by applying SG1 to FR1, one derives the security requirement 

(constraint) SR1: [FR1] only to HR staff. An informal argument that this requirement 

satisfies the security goal is: confidentiality of personnel data implies that people in general 

cannot be allowed access to this information, but HR staff can be relied upon to maintain its 

confidentiality. Therefore, a constraint that permits HR staff, but nobody else, to access it will 

satisfy the security goal. 

SG2 is less obvious. There is no functional requirement that permits modification of 

PersData, so one might assume that there is no functional requirement for SG2 to constrain. 

However, FR1 does display information, and clearly one wishes that the information displayed 

be an exact analog of the stored information. From this wish, one can formulate the security 

requirement SR2: [FR1] only if the displayed information is a correct 

representation of stored information. 

Applying SG3 to FR1, the (somewhat arbitrary) security requirement SR3 is derived: SR3: 

[FR1] within 60 minutes of its request. 
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Figure 5-5 shows the problem diagram, modified to show the constraints.  

At this point, one should validate that the original business goals are still adequately satisfied 

in the face of the security requirements. It is possible that a security requirement is so 

constraining that the system no longer meets its business goals. For example, SR1 could have 

been the constraint [FR1] only to the Chief Information Officer. This constraint is 

arguably so severe that the system would not meet its business goals. 

5.10 Chapter Summary 

This chapter presented the second of our contributions, our security requirements framework. 

The framework incorporates a practical definition of security requirements that have clear 

yes/no satisfaction criteria. It also makes the role of system context explicit. 

The next chapter completes our explanation of our framework, focusing on Stage 4 – 

verification that security requirements can be satisfied by the system. We describe our third 

contribution, security satisfaction arguments, then complete the remainder of our example. 

 

 
Figure 5-5 – Problem with security requirements added 
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Chapter 6. Security Requirement Satisfaction Arguments 

As was said in Chapter 5, it is important to verify that the security requirements are satisfied 

by the system as described by the context. We use satisfaction arguments for this purpose. 

Chapter 4 introduced informal satisfaction arguments based around trust assumptions. This 

chapter extends those ideas, proposing the use of formal and structured informal argumentation 

for this verification step: to convince a reader that a system can satisfy the security requirements 

laid upon it. These satisfaction arguments are in two parts. The first part, the outer argument, 

consists of a formal argument to prove a system can satisfy its security requirements, drawing 

upon claims about a system, and assuming the claims are accepted. The second part, the inner 

argument, consists of structured informal arguments to support the claims made in the first 

argument about system behavior and characteristics. Building on our understanding of security 

requirements, the two-step satisfaction arguments assist with determining security-relevant 

system properties, and how inconsistent and implausible assumptions about them affect the 

security of a system. 

6.1 Trust Assumptions & Arguments 

A security satisfaction argument must satisfy two goals: 1) given a collection of domain 

properties and trust assumptions, to show that a system can be secure, and 2) have a uniform 

structure for the satisfaction argument so that the effects of trust assumptions are made more 

explicit. We satisfy these goals by splitting the satisfaction argument into two parts: a formal 

outer argument that is first constructed, and informal structured inner arguments that are 

constructed next to support the outer argument. If acceptable inner arguments to support the 

outer argument cannot be constructed, then one must reject the outer argument. 
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 Chapter 4 presented trust assumptions, which are claims about the behavior or the type of 

domains included in the system, where the claims are made in order to satisfy a security 

requirement. These claims represent an analyst’s trust that domains behave as described. Trust 

assumptions are in the end the analyst’s opinion, and therefore assumed to be true. At some 

point, the inner arguments must stop, depending on these unsupported assumptions. We are now 

able to define what trust assumptions are in our framework: unsupported statements about the 

behavior of the system, made in order to create a convincing inner argument. 

6.1.1 The Outer Argument 

The formal outer argument uses claims about the behavior of the system (interplay of 

phenomena) to demonstrate that a security requirement (a constraint) is satisfied. The formal 

argument is expressed using some logic chosen by the requirements engineer, where the 

premises are formed from claims about domain properties and behavior, and the conclusion is 

the satisfaction of the security requirement. For simplicity, we use propositional logic in this 

chapter, resulting in the outer argument being a proof of the form: 

(domain behavior premises) ├─ (security requirement(s)) 

6.1.2  The Inner Arguments 

Inner arguments are informal arguments made to support the claims used in the outer 

argument. This thesis proposes a form inspired by the work of Toulmin (1958), one of the 

earliest advocates and developers of a structure for informal human reasoning and 

argumentation. We chose Toulmin-style arguments for what might be considered an engineering 

reason: they are well suited for our purpose because other than requiring that an argument have 

a conclusion, they impose restrictions on neither what can be argued nor the logical system to 

which the argument must conform. Toulmin arguments facilitate the capture of:  

• relationships between domain properties – the premises in the formal argument. 

• the trust assumptions that either are, or eventually support, these premises. 

• reasons why the argument may not be valid.  
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Toulmin et al. (Toulmin, Rieke, & Janik, 1979) describe arguments as consisting of: 

1. Claims, the end point of the argument – what one wishes to convince the world of. 

2. Grounds, providing any underlying support for the argument, such as evidence, facts, 

common knowledge, etc.  

3. Warrants, connecting and establishing relevancy between the grounds and the claims. A 

warrant explains how the grounds are related to the claim, not the validity of the grounds 

themselves. 

4. Backing, establishing that the warrants are themselves trustworthy. These are, in effect, 

grounds for believing the warrants. 

5. Modal qualifiers, establishing within the context of the argument the reliability or strength 

of the connections between warrants, grounds, and claims. Modal qualifiers permit the 

introduction of rebutting circumstances. 

6. Rebuttals, describing what might invalidate any of the grounds, warrants, or backing, thus 

invalidating the support for the claim. 

Toulmin proposed a diagram for arguments that indicates how the parts fit together (Toulmin, 

1958), shown in Figure 6-1. The lines in the figure show ‘movement’ of the argument from left 

(grounds) to right (claims). Intersections show where parts of the argument support or detract 

from the main line. Warrants support using grounds to justify a claim, but rebuttals weaken the 

argument. 

Grounds Claim

Rebuttal

Modal
Qualifier

Warrants

Backing

 
Figure 6-1 – Generic Toulmin-form argument 
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The items in an argument are summarized by Toulmin et al. (1979) as follows: “The claims 

involved in real-life arguments are, accordingly, well founded only if sufficient grounds of an 

appropriate and relevant kind can be offered in their support. These grounds must be connected 

to the claims by reliable, applicable, warrants, which are capable in turn of being justified by 

appeal to sufficient backing of the relevant kind. And the entire structure of argument put 

together out of these elements must be capable of being recognized as having this or that kind 

and degree of certainty or probability as being dependent for its reliability on the absence of 

certain particular extraordinary, exceptional, or otherwise rebutting circumstances.” 

Newman & Marshall (1991) show that the Toulmin form suffers because the fundamental 

recursive nature of the argument is obscured. One may need to argue the grounds, thereby 

making them claims; we found this in Chapter 4 when looking at trust assumptions. One may 

need to argue the warrants; this is the reason for the existence of the backing, but it is not clear 

how the backing differs from grounds in a normal argument. Newman and Marshall propose 

several extensions of Toulmin arguments, such as “argument chains” (claims become grounds), 

“argument hierarchies” (claims become warrants), “confluence arguments” (the ‘and’ing of 

multiple arguments), and “connections by rebuttal” (rebuttals in sub-arguments).  

Although these different extensions serve different purposes in an argument, we claim that a 

single structure can accommodate all of them. To that end, we propose a unifying scheme that 

makes the recursive properties of arguments and the relationships between grounds, warrants, 

and claims explicit, while keeping the basic connections between the components that Toulmin 

proposed. In our scheme, each of the components of a Toulmin-form argument is either a 

proposition (unargued) or a sub-argument (argued). We also include logical connectives in order 

to accommodate “confluence arguments”. 

This scheme is realized using a simple language to represent the structure of the extended 

Toulmin arguments. The language captures the essence of Toulmin arguments while 

generalizing recursion and sub-arguments. A textual language was chosen because a) textual 
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utterances7 are easier to manipulate automatically than tree diagrams, b) argument graphs are 

easily generated from the parser’s abstract syntax tree, and c) a ‘compiler’ can assist in dynamic 

browsing of arguments. The syntax of the language is formally defined by the LR(1) grammar 

(Aho, Sethi, & Ullman, 1986) shown in Figure 6-2. We will show how the language is used in 

the worked example. 

Our extensions have the side effect of making the role of trust assumptions within the 

argument explicit. Recall that in our argument language, a component of an argument is either a 
                                                      

7 Utterance: a stream of symbols that, when processed by a lexical analyzer, becomes a stream of lexemes that is processed by a 

parser to determine if the utterance is valid, as determined by the syntactic (and possibly semantic) rules of the language. 

argument     : optional_assignments claim '.' 
    | argument optional_assignments claim '.' ; 

optional_assignments   : LET assignments ';'  
    | // empty ; 

assignments    : assignment  
    | assignments ',' assignment ; 

assignment    : IDENTIFIER '=' atom ; 

claim     : optional_grounds proposition optional_rebuttals; 

optional_rebuttals   : REBUTTED BY rebuttals_list 
    | // empty ; 

rebuttals_list   : rebuttal  
    | rebuttals_list ',' rebuttal ; 

rebuttal    : proposition 
    | proposition MITIGATED BY proposition 
    | proposition MITIGATED BY '(' claim ')' ; 

optional_grounds   : GIVEN GROUNDS grounds_expr optional_warrant THUS CLAIM 
    | // empty ; 

optional_warrant    : WARRANTED BY grounds_expr 
    | // empty ; 

grounds_expr   : grounds_factor 
    | grounds_expr AND grounds_factor  ; 

grounds_factor   : grounds_term 
    | grounds_factor OR grounds_term    ; 

grounds_term   : grounds  
    | NOT grounds ; 

grounds    : proposition | '(' claim ')' ; 

proposition    : IDENTIFIER ':' atom 
    | IDENTIFIER  
    | atom  ; 

atom     : STRING   ; 

Figure 6-2 – Language Grammar 



Chapter 6. Security Requirement Satisfaction Arguments 

100 

proposition or a sub-argument. In other words, some components are leaf nodes (propositions), 

and others are interior nodes. Leaf nodes are trust assumptions. 

Applying the notion of leaf nodes to our two-part argument structure, trust assumptions are: 

• Premises found in an outer argument that do not appear as a claim on an inner argument. 

Such premises are, in effect, unsupported claims about domain behavior, consisting of an 

inner argument that consists only of a claim. 

• Grounds, warrants, etc., that are found in an inner argument but do not appear as a claim in 

some other inner argument. 

This definition of trust assumptions fits well with both the discussion in Chapter 4 and the 

extended recursive Toulmin argumentation described in this section. 

6.2 Worked Example 

The example of a Personnel Information display system began in Chapter 5 Section 5.9 is 

continued here to illustrate the outer and inner arguments. The work in stages 1 through 3 was 

done in Chapter 5, providing us with primary security requirements. We construct the 

satisfaction arguments in this chapter. Given the system security requirements, there are design 

decisions to be made about where to locate the security functionality and the approach to be 

used, and we provide one example of this. 

Reviewing the information in Chapter 5, recall that there was one business goal 

BG1: Provision of people's personnel information to them. 

Initial requirements were elicited and there was only one functional requirement: 

FR1: On request from a Person (instance of People), the system shall 

display personnel information (PersData) for a specified payroll number 

(Payroll#) to that Person. 

Three security goals were identified: 

SG1: prevent unauthorized exposure of PersData 

SG2: prevent unauthorized alteration of PersData,  

SG3: prevent denial of access to PersData by authorized persons. 

Applying SG1, SG2, and SG3 to FR1 resulted in three security requirements: 
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SR1: Personnel information must be provided only to HR staff. 

SR2: displayed information must be a correct representation of stored 

information. 

SR3: Personnel information must be provided to HR staff within 60 minutes 

of its request. 

Although three security requirements were derived, considering one of them is sufficient to 

explore our ideas. Working through the others would be needlessly repetitive. We choose SR1. 

Figure 6-3 shows the initial problem diagram for this application. There are two phenomena 

of interest. The first, U!persNumber, is the user’s request for personnel information. The second, 

M!persData, is the information returned by the request. 

6.2.1 Constructing Satisfaction Arguments 

Our goal is to construct a convincing satisfaction argument that a system can satisfy its 

security requirements. The reader may note the use of the word “can”, instead of the word 

“will”. We use the phrase “can satisfy” because one cannot know if the eventual implementation 

will respect the specifications. Nor can one know if the system will introduce unintended 

vulnerabilities, which will manifest themselves as phenomena not described in the behavioral 

specification but visible in the world; buffer overflows are a prime example. 

We begin by constructing an outer argument that proves the claim: HR data is provided only 

to HR staff. 

 
Figure 6-3 - Problem diagram for the HR data retrieval application 
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6.2.1.1 The Outer Argument 

Starting with the HR problem shown in Figure 6-3, we first attempt to construct a proof that 

M!persData occurs only when U!persNumber is input by a member of HR staff, or more 

formally that M!persData ├─ (User ∈ HR). 

There are two domains in the problem: the domain ‘Users’ and the ‘machine’ (which contains 

the data). To construct the argument, the behavior of the system is first described more formally. 

We chose a notation based on the causal logic described in (Moffett, Hall, Coombes, & 

McDermid, 1996) because a) phenomena in our context diagrams are normally events, handled 

well by a causal logic, b) ‘a causes b’ is well understood in requirements engineering, and c) 

causal logic introduces temporal properties without introducing the complexity of temporal 

modal logic. 

Three important points must be made about our behavior specifications: 

1. A statement A shall cause D can be expressed as the propositional implication A → D. 

The emission of phenomenon A always results in the emission of phenomenon D. We 

recognize that such an expression assumes that the temporal properties of shall cause are 

not significant, and this assumption is either a trust assumption or must be explicitly 

investigated in the inner argument. 

2. The behavior specification is assumed to be complete, in that if the behavior specification 

consists of exactly A shall cause D, then no phenomenon other than A can cause D, and D 

cannot occur spontaneously. In other words, the mutual implication A ↔ D is true.  

3. Extending #2 above, if the behavior specification consists of some set of expressions 

A shall cause D,  B shall cause D, and C shall cause D, then no phenomenon other 

than A, B, and C can cause D. Expressed as a mutual implication, this is (A | B | C) ↔ D. 

The behavior of the domains in Figure 6-3, expressed in our chosen notation in terms of the 

phenomena, is: 

U!persNum shall cause M!persData 

A major problem is immediately exposed. Given what is seen in the behavior description, there 

is no way to connect the system’s behavior to the security requirement, because the type of the 
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domain ‘Users’ is too general. It apparently includes all humans, regardless of whether or not 

they are HR staff members, or even employees. The formal argument cannot be constructed. A 

requirements/design iteration is required; the system designers must be asked for help.  

There are (at least) three design choices: 

1. Introduce a physical restriction, e.g., a guard, to change the type of the domain from ‘Users’ 

to ‘HR staff’. Doing so would permit construction of the following outer argument (proof): 

H  symbol  defined as (User, member of HR because of the guard). 

I  symbol defined as the occurrence of phenomenon U!persNum 

D symbol  defined as the occurrence of phenomenon M!persData 

1. I ↔ D premise from the behavioral specification 

2. I → H premise if input entered, then user ∈ HR (because of guard) 

3. D premise assume personal information is displayed 

4. D → I  split implication from #2 

5. I  detach 3, 4 

6. H conclusion detach 2, 5 
 

2. Introduce phenomena into the system permitting authentication and authorization, thereby 

changing the type of the domain from ‘Users’ to ‘HR staff’. 

3. Introduce a trust assumption (TA) asserting that the type of the domain is ‘HR staff’, even 

though no information is available to support the assertion. 

To make the example more interesting, we choose option 2, which requires a 

requirements/design iteration. When asked, the designers chose to use an existing password-

based authentication mechanism. The following secondary security goal is added: 

SSG1: Users are to be authenticated as HR staff 

The requirements engineer returns to the box Construct System Context in stage one of the 

activity diagram (see Figure 5-3 in Chapter 5, on page 82). The appropriate domains and 

phenomena are added to the context. Passing through the remainder of stage one and then stages 

2 and 3 provides us with the following: 

• Functional requirements to manage the authentication system must be considered in stage 

1. However, as the authentication system already exists, no new functional requirements 

need be added. 
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• The information in the authentication system is an asset. However, the same comment as 

above still applies: no new goals need be added because the system already exists. 

• No secondary security requirements need be added, because SSG1 did not cause any new 

assets or other secondary security goals to come into existence. 

Figure 6-4 shows the resulting problem diagram that will be used in this second iteration of 

stage 4 of the activity diagram. The diagram shows that the user is to supply some sort of 

credentials along with the request for information. These credentials are passed to the existing 

external authentication and authorization engine, which uses the internal predicate isValid() to 

determine if the credentials are for a member of human resources and then answer yes or no. If 

the answer is yes, then the machine provides the data, otherwise the request is refused. The 

corresponding behavior specification is: 

1. U!persNumber(#, userID, credentials)  
    shall cause M!validate(UserID, credentials) 

2. M!validate(userID, credentials) and isValid(userID, credentials) 
  shall cause CS!YES 

3. M!validate(userID, credentials) and not isValid(userID, credentials)  
  shall cause CS!NO  

4. CS!YES shall cause M!persData 
5. CS!NO shall cause M!NO 

 
Figure 6-4 – New HR staff problem diagram 
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One can now construct the satisfaction argument for the reformulated problem. One begins 

with the outer argument, first defining the symbols to be used. These symbols are shown in the 

following table. 

Symbol Derived from (see Figure 6-4) 
I : InputRequest U!persNumber(#, userID, credentials) 
V: CredsPresentedForValidation M!validate(userID, credentials) 
Y: ReplyYes CS!YES 
D: DisplayInfo M!persData 
C: CredsAreValid isValid(userID, credentials) 
H: MemberOfHR Conclusion: user is member of HR 

We derive the following predicate logic premises from the behavioral specification. These 

premises are the grounds used in the formal argument and, if necessary, will be supported by 

informal arguments. 

Name Premise Description 
P1 I → V Behavior specification statement #1  
P2 C → H Definition of isValid: if credentials are valid then user is a 

member of HR. 
P3 Y → (C & V) Behavioral descriptions #2 and #3: a Yes happens only if 

credentials are presented for validation, then validated. 
Derived from the mutual implication (C & V) ↔ Y  that 
converts to ((C & V) → Y) & (Y → (C & V)) 

P4 D → Y Behavior descriptions #4 and #5: display happens only if the 
answer from behavior descriptions #2 and #3 was CS!YES 

As the requirement is that information be displayed only to a member of HR, D is included as 

a premise and H as the conclusion. Thus, one wants to show: 
(P1, P2, P3, P4, D ├─ H). 

A proof is shown in Figure 6-5. 

1 I →  V               (Premise P1) 
2 C →  H  (Premise P2) 
3 Y →  C & V (Premise P3) 
4 D →  Y  (Premise P4) 
5 D  (Premise) 
6 Y  (Detach (→ elimination), 4, 5) 
7 C & V  (Detach, 3, 6) 
8 V  (Split (& elimination), 7) 
9 C  (Split (& elimination), 7) 
10 H  (Detach, 2, 9) 
11 D →  H  (Conclusion, 5 leads to 10) 

Figure 6-5 – Proof that the security argument is satisfied 
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6.2.1.2 The Inner Arguments 

Each of the rules used in the outer argument should be examined critically. We choose 

premises P1, P3, & P4 for initial consideration. These premises are probably not controversial, 

because one can say that they are part of the specification of the system to be implemented. The 

arguments thus consist of one trust assumption, as shown in the following utterance in our 

argument language: 

let G1 = "system will be correctly implemented"; 

given grounds G1 thus claim P1. 

given grounds G1 thus claim P3. 

given grounds G1 thus claim P4. 

Premise P2 is more complex. This premise is making the claim that instances of the domain 

‘Users’ are limited to be instances of the subtype ‘HR members’, because only HR members 

have valid credentials. We show an argument for this claim below. This argument incorporates 

three trust assumptions: G2, G3, and G4. 

given grounds 

  G2: "Valid credentials are given only to HR members" 

warranted by 

( 

 given grounds 

  G3: "Credentials are given in person" 

 warranted by 

  G4: "Credential administrators are honest & reliable" 

 thus claim 

  C1: "Credential administration is correct" 

) 

thus claim 

 P2: "HR credentials provided --> HR member" 

rebutted by  

 R1: "HR member is dishonest", 

 R2: "social engineering attack succeeds", 

 R3: "person keeps credentials when changing depts" . 

The three rebuttals in the argument require some treatment. Recall that rebuttals express 

conditions under which the argument does not hold. If the rebuttals remain in the argument, they 

create implicit trust assumptions saying that the conditions expressed in the rebuttals will not 
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occur, which may be acceptable. Alternatively, one could construct an argument against a 

rebuttal. If the stakeholder is unwilling to accept the rebuttals, then the system must somehow 

be changed to mitigate them. We examine a mitigation of R1 in the next section. 

6.2.2 Removing Rebuttals by Adding Secondary Security Goals 

At times, the most straightforward way to remove a rebuttal might be to add functionality to a 

system, which is done by adding secondary security goals, then passing back through the 

activities to see if new functional requirements are added, as well as new assets and security 

requirements. This process would permit adding new grounds or warrants to mitigate the 

conditions that permit the rebuttal.  

As an example, consider a dishonest HR member selling credentials (an instance of R1). One 

could mitigate this risk by increasing the probability that an unusual use of the employee’s 

credentials would be detected, thus raising the probability that the misuse would be detected. 

This is new functionality.  

As already noted, the framework permits addition of new functionality by adding secondary 

security goals and then satisfying these goals. In this example, the secondary security goal to 

add is 

SSG2: ensure that HR members do not sell credentials. 

After adding this goal, a requirements/design iteration is required to add sufficient design 

information to the context to be able to satisfy this security goal. We pass back to stage 1 in our 

activity diagram (see Figure 5-3 in Chapter 5, on page 82) and pass to the step elicit/revise 

functional requirements. In this example, one might add two functional requirements to the 

system in order to satisfy SSG2: 

• FR2: all uses of HR credentials shall be logged 

• FR3: any use of HR credentials from a location outside the HR 
department shall be immediately signaled by email to the HR director. 

As the context does not contain the phenomena required to satisfy these functional 

requirements, the context is revisited and appropriate phenomena added. 
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After passing through stages two and three of the activity diagram, these functional 

requirements would then be used in stage 4 as grounds in an argument against the rebuttal R1: 

given grounds 

 G5: "uses of HR creds are logged (see FR2)" 

  and 

 G6: "uses of HR creds from outside are emailed to HR director (see FR3)" 

warranted by 

 G7: "these actions increase the probability of detecting improper cred use" 

  and 

 G8: "the employee does not want to get caught" 

thus claim 

 C2: "HR members will not sell their credentials". 

 

C2 is added as a mitigating proposition to the rebuttal in argument 1. 

R1: "HR member is dishonest" mitigated by C2 

The passing through of stages 2 and 3 of the activity diagram needs further discussion. In our 

framework, one must ask if the new functional requirements FR2 and FR3 give rise to new assets 

and therefore new security goals (stage 2), and whether any existing or new security goals that 

are applied to functional requirements gives rise to new security requirements (stage 3). In the 

current example, at least one new asset has been created: the access log. One could argue that 

the HR director’s email has become an asset, or has at least changed character. Analysis of these 

assets would produce threat descriptions (one threat description produced might be {alter, 

log data, inability to verify honesty}), which would lead to new secondary security 

goals in stage 2, which would lead to new secondary security requirements in stage 3, which 

would lead to additional satisfaction arguments. The process continues until an acceptable set of 

satisfactory arguments is constructed. 

6.3 Chapter Summary 

This chapter described our third contribution, the structured formal and informal 

argumentation to verify that a system can satisfy its security requirements by being sufficiently 

convincing that the system can satisfy the security requirements laid upon it. The formal 
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argument is used to prove a system can satisfy its security requirements, drawing upon claims 

about a system’s behavior. The informal arguments are used to support the claims made in the 

first argument about system behavior and characteristics. These two part satisfaction arguments 

provide assurance by combining formal proof with evidence-based argumentation. They assist 

with determining security-relevant system properties, and inconsistent or implausible 

assumptions about them. 
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Chapter 7. Evaluation 

We applied our framework in the “CRISTAL UK” project (Watson, 2006), a research 

initiative, managed by NATS (formerly National Air Traffic Services) for the 

EUROCONTROL CASCADE Programme. Although safety issues raised by potential use of the 

new technology are well understood and are being fully considered by the project, potential 

changes in security requirements are less well understood. Therefore, our goals were to gain 

experience with the application of our framework to validate its utility, and to discover security 

requirements in our chosen problem domain.  

The experience was very revealing. For the project, we exposed assumptions and potential 

security problems that may need to be considered; determining precisely what actions to take is 

a future task for the project and will be based on a risk assessment. As for the framework, our 

systematic argumentation exposed hidden assumptions about system behavior that led to 

potential security problems. However, we also exposed problems with our framework: 

constructing and understanding the formal arguments, representation of the informal arguments, 

and determining the size and content of the system context used for analysis. 

This chapter is structured as follows. It begins in Section 7.1, with a detailed overview of the 

project and the technology. Section 7.2 presents the analysis. Section 7.3 discusses lessons 

learned, and Section 7.4 concludes. 

7.1 Project Overview 

The “CRISTAL UK” project (Watson, 2006) is a research initiative, managed by NATS for 

the EUROCONTROL CASCADE Programme in collaboration with Raytheon Systems 

Limited, SITA and QinetiQ. 
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The project is charged with “determining the role of ‘passive surveillance’ in NATS future 

surveillance system[s]” (Watson, 2006). It is investigating the potential role of passive 

surveillance technologies in air traffic control areas where radar is used currently, such as in and 

around the airspace at busy airports. 

In the context of this project, passive surveillance means using information broadcast by 

aircraft, without any active request or interrogation, to derive surveillance information about the 

aircraft, such as its position. This is opposed to active surveillance, which uses transmissions 

from a ground system (e.g., radar) to determine the location of an aircraft or to generate a 

response from it. 

The members of the team have different roles in the project. NATS is responsible for the 

CRISTAL UK project and its deliverables. The Open University is not responsible for any 

deliverables in the project, but instead has a limited advisory role. Nonetheless, we hope that the 

requirements the project developed and, more importantly, the arguments, rebuttals, and 

mitigations that our analysis generated, will find their place in the project’s delivered analysis. 

7.1.1 Background – Air Traffic Control 

Air Traffic Control is responsible for the safe and efficient movement of aircraft through a 

given airspace. Unfortunately, ‘safe’ and ‘efficient’ are at odds with each other. An empty 

airspace is a safe one – no loss of life or property due to problems with aircraft is possible – but 

it is also a very inefficient one. One increases efficiency by adding aircraft into the airspace, 

which increases risk that an accident (or an intentional act leading to loss) will occur. Air traffic 

controllers try to keep the risk low by maintaining safe horizontal and vertical distances 

(separation) between aircraft. To do so, air traffic controllers must know the identity and 

position of aircraft with a high degree of accuracy, integrity, and assurance. 

7.1.2 Separation 

The most important job of an air traffic controller is to maintain a safe separation between 

aircraft while ensuring that the aircraft get to where they want to go. The minimum separation 
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between aircraft at a given time is dependent on many factors, including the speed of aircraft, 

surveillance accuracy, the ability to communicate with aircraft and between controllers, the 

redundancy of surveillance systems, and the ability to spot and rectify mistakes.  

Most of the factors are strongly influenced by how often the controller is told where an 

aircraft actually is, as opposed to where it is supposed to be. The more often positions are 

reported, the more accurate the controller’s picture of the airspace is, assuming that the position 

reports are correct. The controller determines aircrafts’ positions using active and passive 

surveillance. 

7.1.3 Active versus Passive Surveillance 

Active surveillance describes a process to determine the position of aircraft independently of 

where the aircraft thinks it is. There are two systems in use: primary radar and secondary radar. 

Primary radar operates by broadcasting directional pulses and listening for pulses reflected off 

aircraft. This system is independent because no help is required from the aircraft to be detected 

by the radar. Primary radar can only provide the position of the aircraft. Secondary radar 

operates by using highly directional transmissions of enquiries. Aircraft are expected to respond 

to the query in a fixed time. The position of the aircraft is determined from the position of the 

antenna and the time required to hear a response from an aircraft. The response can (and does) 

contain information, such as the aircraft’s identity and its altitude. Where primary radar is 

considered independent, secondary radar can be considered to be ‘cooperative’ surveillance. 

As secondary radar depends upon the aircraft responding to an enquiry, it will not detect 

aircraft that do not respond. Typically, primary and secondary radar antennae are installed 

together on the same rotating mount and used together to complement one another. If the 

primary radar detects something that is not responding to secondary radar enquiries, the air 

traffic controller can take appropriate action. 

Passive surveillance consists of equipment that listens for transmissions from aircraft, then 

computes the position using that transmission; the surveillance system makes no request of the 

aircraft for transmission. There are two general techniques in use: 
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• The aircraft broadcasts its identity and position information. The surveillance system uses 

the information as is. 

• The surveillance system uses a network of multiple receivers and multilateration 

(intersection of the hyperboloids described by the difference in arrival time of the 

transmission at each receiver) to determine the position of the transmitter. 

The first technique is known as ADS-B (Automatic Dependent Surveillance – Broadcast). It 

uses satellite navigation technology on board the aircraft to determine where the aircraft is, and 

then broadcasts that position to other users without the need for any pilot input or radar 

interrogation. This technique depends upon the aircraft knowing its accurate position. An 

aircraft that either maliciously or through equipment failure reports an incorrect position will be 

misplaced; the only sanity check available is to check if a position report makes sense (is 

credible). Receiving credible but erroneous information is a key problem to be addressed. 

While ADS-B can be used by ground users as a replacement for traditional surveillance 

techniques like radar, it is also seen as an enabling technology for new methods of air traffic 

control. The broadcast of surveillance data that can be received by all users, including other 

aircraft, may permit tasks normally undertaken by a controller to be delegated to the pilot. These 

ideas are encompassed in the concept of Airborne Separation Assistance Systems (ASAS) 

(Cervo, 2005). 

The second technique has similar characteristics to secondary radar; the computation of the 

position depends solely upon the timing of receipt of signals.  

Neither secondary radar nor one of the passive surveillance techniques can detect aircraft that 

are not co-operating. 

7.1.4 Increasing Use of Passive Surveillance 

The use of passive surveillance has become more attractive to Air Traffic Control Service 

Providers (ANSPs) in recent years because aircraft are increasingly being equipped with 

suitable avionics. In addition to the perceived operational benefits of these technologies, there 
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are potentially significant cost savings in procurement and through-life maintenance costs of 

these technologies over traditional surveillance means. 

According to EUROCONTROL, increased use of passive surveillance should bring the 

following  benefits (list quoted from (Rekkas, 2005)): 

• Reduced ground infrastructure cost, resulting in a lower cost base and higher Efficiency. 

• Reduced controller and pilot workload, and thus increased productivity achieved by the 

introduction of automated support, the reduction of voice communications workload and 

the automation of routine aircrew and controller tasks. This will lead to Capacity and 

Safety benefits. 

• Increased flexibility, achieved by the provision of a new communications medium that 

aircrew and controllers can use in combination with existing voice communications. This 

is expected to lead to Efficiency and Safety benefits. 

• Improved pilot and controller situational awareness and monitoring, achieved by an 

increase in the availability and quality of the information (e.g., from aircraft systems). This 

will lead to Capacity, Efficiency and Safety benefits. 

• More balanced distribution of tasks among pilots and controllers achieved through an 

improved task distribution in ATC sectors and the delegation of tasks from the controller 

to the pilot. This will lead to Capacity, Efficiency and Safety benefits. 

• More balanced distribution of workload between different ATC sectors achieved through 

the introduction of new procedures supported by automation that will enable the transfer of 

some tasks to adjacent sectors. 

The US Federal Aviation Authority has a very similar list (Federal Aviation Administration, 

2003). The open question, and the reason for the existence of many projects including 

CRISTAL UK, is whether these benefits can be obtained with adequate safety and security. 
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7.1.5 Using ADS-B to Achieve the Benefits 

In order to obtain the majority of the benefits of passive surveillance, there must be aircraft-

based equipment available that reports the required information about the aircraft. The ADS-B 

standard and complying equipment will meet this need. 

ADS-B-equipped aircraft broadcast information approximately once per second. These 

transmissions include information about the position and status of the aircraft. The information 

is broadcast in various messages that include airborne position, surface position, aircraft 

identification and type, airborne velocity, and aircraft operational status messages (CASA, 

2004). This information is collected by ADS-B receivers and then passed to air traffic control 

processing systems to be displayed to the controller, either on existing displays (preferred) or on 

some new display. The information broadcast by an ADS-B system is derived both from the 

avionic systems in the aircraft (e.g., air speed, barometric altitude, aircraft status) and from 

satellite navigation equipment (e.g., surface position, geometric altitude, and ground speed). 

ADS-B messages are not ‘signed’ in any fashion; one cannot verify that a message actually 

comes from the aircraft identified in the contents of the message. 

7.2 The Security Requirements Analysis 

The project asks whether ADS-B position reports can (or should) be considered to be a 

primary position source. We analyzed the security implications of this position using our 

framework by stepping through the activities in Figure 5-3 in Chapter 5, on page 82. The 

sections below are numbered using iteration.stage, where ‘stage’ comes from Figure 5-3. For 

example, the second stage of the first iteration will be numbered 1.2. 

7.2.1 The First Iteration 

During this first iteration, we established the context for the system, the functional 

requirements, and the primary security goals & requirements. 
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Step 1.1 – Identify Functional Requirements. 

In this stage of the activity diagram, we identified the business goal(s) of the system under 

analysis, described the context, and identified the functional requirement(s). This task was 

dramatically simplified because working ADS-B equipment was supplied by project partners 

and the initial business goal was given. That business goal was: 

BG1: Provide safe and efficient air traffic management. 

Given the above goal and project’s remit, the functional requirement can be summarized by:  

FR1: Provide positions of aircraft. 

The only task remaining was to determine the context, which is shown in Figure 7-1. 

Step 1.2 – Identify Security Goals. 

This step was charged with determining the assets involved with the system, the harms that 

the assets can suffer (directly or indirectly), and finally the security goals to avoid those harms.  

The direct assets found from the context are GPS receivers and signals, aircraft, positions of 

the aircraft (broadcast), ground receivers, and the ATC system (including the controllers). The 

indirect assets are the contents of the aircraft (e.g., passengers), items around the ATC area (e.g., 

buildings, infrastructure, potentially the airport), and the aircraft owner’s business (e.g., 

reputation, profitability, etc.). 

 
Figure 7-1 – System context – Iteration one 
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Using this list of assets, we can (with the help of the project’s domain experts) determine the 

harms involved in the system, and then the threat descriptions expressed as violation of general 

security goal on asset can cause harm. The threat descriptions are: 

General goal: confidentiality: 
T1: {publicizing, airplanes’ position, facilitating attack in air} 

T2: {publicizing, airplanes’ position, loss of trade secrets} 

The stakeholders made the decision that threats T1 & T2 are outside of the project’s remit. 

General goal: integrity 

T3: {~correct, airplanes’ position, lost property due to collision or 

  crash} 

T4: {~correct, airplanes’ position, lost revenue due to increased 

  separation} 

T5: {~correct, airplanes’ position, lost revenue due to lost confidence} 

General goal: availability 

T6: {~available, airplanes’ position, lost property due to 

  collision/crash} 

T7: {~available, airplanes’ position, lost revenue due to increased 

  separation} 

T8: {~available, airplanes’ position, lost revenue due to lost 

  confidence} 

The security goals are determined by avoiding the action in the threat descriptions. Given these 

threat descriptions, the security goals are: 

SG1: Have correct positions (avoids T3, T4, and T5) 

SG2: Report positions on a timely basis (avoids T6, T7, T8) 

 

Step 1.3 – Identify Security Requirements. 

In this step, we determined the constraints to place on the functional requirement FR1: 

Provide positions of airplanes. We did this by composing the security goals and the 

functional requirement, resulting in a constrained functional requirement. 

The composition produces two security requirements (constraints). The first is  

  SR1 [FR1: Provide positions of aircraft]: positions shall be accurate. 
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The NATS requirement for accuracy is that the aircraft be within 300 meters of its reported 

position when the position is received. However, ADS-B can potentially improve on that by an 

order of magnitude, and the consequences of this must be studied. SR1 operationalizes SG1.  

The second constraint is 

 SR2 [FR1: Provide positions of airplanes]: positions shall be timely.  

The NATS requirement for timeliness is that a new position be received within 4 to 6 seconds of 

the last position report, or of the aircraft entering controlled airspace. SR2 operationalizes SG2. 

Figure 7-2 shows the context with the constraints. 

An informal satisfaction argument that SR1 and SR2 satisfy SG1 and SG2 is as follows: the 

goal SG1 is satisfied because accurate positions are available when needed (SR1 and SR2); and 

SG2 is satisfied directly by SR2.  

Step 1.4 – Satisfaction Arguments 

We began by constructing the formal outer argument. The steps are 1) annotate the context 

with the phenomena exchanged between domains, 2) develop a behavioral specification for the 

system in terms of the phenomena, and then 3) use the phenomena and behavioral specification 

in a proof that if they are complete, the system can satisfy the security requirements. 

 
Figure 7-2 - Context with constrained requirement 
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The Phenomena 

Figure 7-2 shows the phenomena exchanged within the system and used in the behavior 

specification. The naming convention is “sending domain!message”. The phenomena are: 

AP!RECV: The airplane receives GPS broadcasts. 

AP!XMIT: The airplane transmits its position. 

R!SEND: The receiver sends the received position to the machine. 

M!POSREPORT: The machine sends the position to the ATC system. 

ATC!HASPOS: The ATC confirms that it has the aircraft’s position. 

The Behavior Specification 

 The behavioral specification is built using the variant of the causal logic described in 

Chapter 6 Section 6.2.1. For this project’s ATC system, the behavioral specification is: 

AP!RECV shall cause AP!XMIT 

AP!XMIT shall cause R!SEND 

R!SEND shall cause M!POSREPORT 

M!POSREPORT shall cause ATC!HASPOS 

We recognized that reception of GPS signals by the aircraft will not actually cause the aircraft to 

transmit position reports, but instead enables them. We chose to accept this slight misstatement 

instead of adding a clock to the context and changing to a temporal logic. As a consequence, 

AP!RECV shall cause AP!XMIT embeds the assumption that it repeats often enough to satisfy 

the NATS requirement. We also assumed that each processing step in the system will complete 

in an appropriate amount of time, again to avoid changing to a temporal logic. 

The Outer (Formal) Argument 

There was now enough information to construct the outer argument, a proof that the system 

can respect the security requirements. We want to prove that 

 AP!RECV ├─ ATC!HASPOS  

If we can prove this, then we have proved that the system can satisfy both SR1 (accuracy) and 

SR2 (timeliness), given the following assumptions: 1) the context is correct and the 

implementation introduces no conflicting behavior, and 2) the temporal properties assumed 
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above are not significant. Some of these assumptions will be challenged when we build the 

inner arguments.  

A proof is shown in Figure 7-3. 

The Inner Arguments 

The premises and assumptions of the outer argument comprise a set of assumptions that must 

hold for the system to be secure. The purpose of the inner arguments is to challenge these 

assumptions in order to establish whether they hold in the real world. In our case, steps 1 

through 5 in Figure 7-3 are the assumptions to be challenged. 

As explained in Chapter 6 Section 6.1.2, we chose to represent arguments in our framework 

in a text form because this form handles complex grounds-to-claim graphs and recursion in the 

arguments more naturally. The argument for the initial premise AP!RECV  AP!XMIT in this 

form is: 

given grounds 

Received GPS positions are accurate (AP!RECV & assumptions) 

warranted by 

 Calculations are accurate (assumption) 

thus claim 

 Airplanes transmit accurate positions (AP!XMIT) 

[rebutted by ...] 

1. AP!RECV  AP!XMIT (premise) 

2. AP!XMIT  R!SEND (premise) 

3. R!SEND  M!POSREPORT (premise) 

4. M!POSREPORT  ATC!HASPOS (premise) 

5. AP!RECV        (assumption) 

6.   AP!XMIT        (Detach, 1, 5) 

7.   R!SEND      (Detach, 2, 6) 

8.   M!POSREPORT    (Detach, 3, 7) 

9. ATC!HASPOS          (Detach, 4, 8) 

 

Figure 7-3 - The outer argument (proof) 



Chapter 7. Evaluation 

122 

  
One of our first lessons learned was 

that although it is easy to understand 

the text representation of an argument 

when the argument is simple, 

understanding by project members 

became more difficult as the 

arguments become more complex. As 

such, we changed to a modified form of the argument diagrams Toulmin proposed. Figure 7-4 

shows the argument in this form, along with the newly added rebuttals. The text in parentheses 

(e.g., SR2) is the security 

requirement that is violated if the 

rebuttal is true. Figure 7-5 through 

Figure 7-8 show the arguments for 

premises 2 through 4 (numbers of the 

lines in the proof), and for the 

assumption (line 5). 

There are 12 rebuttals in the 

arguments. These rebuttals fall into 

three general categories: sabotage 

where equipment is sabotaged to 

break it (R1.1, R1.2, R1.4, and R1.6 

through R1.11), externally caused 

denial of service (R1.5 and R1.12), 

and the intentional transmission of 

incorrect data (R1.3). Each of these 

rebuttals should be evaluated to 

determine whether it should be 
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Calculations 
are accurate
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Accurate 
positions are 
transmitted

Claim

R1.1: Airplane’s GPS sabotaged. (SR2)Rebuttals
R1.2: ADS-B Transmitter sabotaged. (SR2)

R1.3: Aircrew xmits wrong pos/ID. (SR1)  
Figure 7-4 - Argument for AP!RECV  AP!XMIT 
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mitigated, and if so how. If a rebuttal is to be mitigated, then iteration is required. The project 

assumed that R1.3 presented an unacceptable risk of terrorism; aircraft believed to be following 

some track X but really going somewhere else could do a great deal of damage. 

Note that rebuttals that are safety concerns are not considered here. For example, the 

equivalent of ‘jamming’ can be caused by natural phenomena such as multipath and electrical 

interference. We consider these to be naturally occurring behavior, and therefore to be 

considered during a safety analysis. 

7.2.2 The Second Iteration 

In order to mitigate R1.3, we needed to find a way to know that the position an aircraft 

transmits is the true position of the aircraft. We were less concerned with detecting that an 

aircraft transmitting a correct position is using the wrong identity. 

Multilateration can be used to determine the position of a transmitter, computing the position 

by measuring the difference in a transmission’s arrival time at multiple receivers. We chose this 

approach, and changed the context appropriately. The new context is shown in Figure 7-9. 

Stepping through the framework, we see that we do not have any new functional 

requirements (we put aside administration of the multilateration system). We do have new 

assets, the multilateration computers, but they did not add any new security goals in the context 

of this project. As such, our security requirements did not change.  

C
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positions

Transmitted ATS-B 
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Figure 7-9 – Context diagram, iteration two 
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The behavior specification does have a significant change. We must describe the behavior of 

the new component in the context. The behavior specification is now: 

AP!RECV shall cause AP!XMIT 

AP!XMIT shall cause R!SEND 

R!SEND shall cause MC!SEND 

MC!XMIT shall cause M!POSREPORT 

M!POSREPORT shall cause ATC!HASPOS 

We now have a new premise in our proof, corresponding to the new component of the behavior 

specification.  

We learned another lesson at this point. It was easier to describe the effects of the iteration 

using a graphical ‘sub-argument’ technique, rather than expressing the arguments again. This 

technique applies the mitigation directly to the rebuttal in the argument developed during the 

first iteration. We used that technique here. Figure 7-10 shows the resulting argument and 

mitigation. The figure also shows the next set of rebuttals, described in the next paragraph. 

The first rebuttal (R2.1.1) challenges the assumption that the transmitter is actually in the 

airplane it says it is in, or is even in an airplane. One could have a small airplane accompanying 

a large one. The small plane broadcasts the position, which would permit the large airplane to 

divert. Alternatively, one could have a series of transmitters in cars, pretending to be the 

airplane. The second rebuttal (R2.1.2) challenges the assumption that there is a transmitter 

where multilateration says it is. It is possible to use multiple transmitters and vary the timing to 

Received 
GPS 

positions are 
accurate

Calculations 
are accurate

Accurate 
positions are 
transmitted

R1.1: Airplane’s GPS sabotaged. (SR2)
R1.2: ADS-B Transmitter sabotaged. (SR2)
R1.3: Aircrew xmits wrong pos/ID. (SR1)

M2.1: Verify pos using multilateration

R2.1.1: Source good for bad position

R2.1.2: Timing good for bad position

R2.1.3: Incorrect position computed  
Figure 7-10 – Arguments for the second iteration 
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create ‘virtual transmitters’ at any position (Capkun & Hubaux, 2004).  The third rebuttal 

(R2.1.3) challenges the assumption that the clocks in the receivers are synchronized. It is 

possible to perturb the clock at particular receivers, which would cause the position calculation 

to be offset. More detail on this rebuttal would require looking at specific multilateration time 

synchronization solutions.  

7.2.3 The Third Iteration 

A third iteration would be required to deal with rebuttals R2.1.*, assuming that the risks are 

determined significant, which at first glance they appear to be. For example, primary radar 

mitigates all of them, because it gives a reliable indication that something really is at the 

position reported, and that there is not something elsewhere. R2.1.2 could possibly be mitigated 

by using antennae that provide an approximation of the ‘angle off of horizontal’ of a 

transmission. R2.1.3 can be mitigated by use of a secure clock synchronization technology. 

7.3 Lessons Learned 

This experience taught us several things about using our framework in a real project setting. 

The outer (formal) arguments were difficult to construct and explain. One problem was the 

nature of the proof. The outer argument proves that if the assumptions are valid, if the behavior 

specification is correct, and if there are no other behaviors, then the system can be secure. It 

does not prove that a system will be secure. Given these distinctions, some people did not see 

their utility and wanted to skip directly to the inner arguments. However, in our framework it is 

the outer arguments that provide the assumptions that the inner arguments test, so skipping this 

step was not appropriate. We need to find a better way to motivate, capture, and represent the 

outer arguments. 

It is worth noting that the need to test the assumptions flowing from the outer arguments (the 

premises) did not present a problem. People seemed to enjoy constructing the inner arguments. 
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The project members were happier using a graphical representation of the inner 

arguments, even though the representation had less expressive power than text representation. 

This, plus the desire to bypass the outer arguments, led to us using the rebuttal, mitigation, 

rebuttal graphical argument form. Unfortunately, there are many arguments that would not be 

easy to express completely in this form, such as when a mitigation requires a warrant or covers 

several rebuttals. Tool support for converting between the text and graphical forms and for 

graphically rendering summary arguments would be very helpful. 

Domain knowledge is certainly required, but can sometimes lead people not to question 

assumptions. We found that it was easy for domain experts implicitly to assume that something 

behaves in manner X because that is how it has always done. We found that having domain non-

experts in a project helped; it seemed that someone from outside was more likely to ask “why is 

that?” at odd times. It should be noted that once the questions were asked, we had no problem 

having lively and productive discussions. 

Security problems expand the system context in unexpected ways. For example, the 

buildings in a city are (usually) not considered part of an ATC problem until considering 

whether someone will decide to fly into one. Neither are the GPS satellite signals, until GPS 

jammers are considered. The challenge we faced was to expand the context as much as 

necessary, but no more so than that. 

Iteration is required, especially when considering mitigations. However, iteration requires 

careful management to ensure that interactions are detected. The choice to represent mitigations 

in the context of their rebuttals led naturally to considering them one at a time, when in fact they 

should be considered together as part of a complete analysis. For example, it makes sense to 

consider all the jamming scenarios together (e.g., ADS-B jamming, clock sync jamming, GPS 

jamming), instead of considering them independently. 
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7.4 Conclusions 

We had two goals for the project: to gain experience with the application of our framework to 

validate its utility, and to discover security requirements in our chosen problem domain. As we 

used the framework to produce security requirements, rebuttals, and mitigations that had not 

previously been considered, we consider that we succeeded with both goals.  

Two particular future work items deserve mention. The project showed the need for more 

tool support for representing outer arguments, and we are adding this task to our near-term 

future work list. The effort also showed the need for work on better enabling construction and 

understanding of the outer (formal) arguments by people who do not normally use formality, 

which is a longer-term research question. 
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Chapter 8. Discussion & Future Work 

We presented three contributions in this thesis. Recapitulating from Chapter 1, the first is a 

security requirements framework incorporating a coherent definition of what security 

requirements are and an explicit recognition of the importance of context: the world within 

which the system and the potential attackers exist. The second is trust assumptions, making 

their role in security requirements explicit. The third is two-part satisfaction arguments for 

validating whether the system can satisfy the security requirements, incorporating a formal part 

to establish what premises are key for security, and an informal part to challenge the premises 

and the trust assumptions that support them. These contributions work together to support 

security requirements engineering where a) asset and security goal analysis are done in the 

business context of the system, b) the effects of security requirements on the functional 

requirements are understood, c) design constraints are taken into account, and d) the satisfaction 

of security requirements is established through the use of arguments. The usefulness of the 

contributions has been validated through constructed examples, an industrial case study, and 

peer review. 

Of course, questions and challenges have been raised during the research, and more work 

remains to be done. Some challenges are described in Section 8.1. Section 8.2 discusses future 

work, and this thesis concludes with Section 8.3. 
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8.1 Questions & Challenges 

Several challenging questions were raised during our research. 

8.1.1 Problem vs. Solution Space 

A reasonable objection to the framework described in this thesis is that one is designing the 

system in order to determine its requirements. To some extent, this is true; the details of the 

system and its domains are being refined iteratively. 

However, although it is true that the system and system context are being determined, the 

software design is not. What is being specified are the inputs and outputs (the phenomena) that 

the software will see and produce. By iterating between requirements and design, the 

environment (or context) that the software lives within is being refined to include additional 

domains that need to exist, and additional phenomena required to make use of these domains. 

8.1.2 Traceability of Secondary Security Functional Requirements 

Adding functionality to support security requirements creates a traceability problem. This 

issue was raised during the discussion of SeDAn in Chapter 3 Section 3.1.3. Chapter 6 provided 

two examples where this sort of functionality was added: addition of credential verification to 

permit the outer argument to be constructed, and addition of monitoring and logging 

functionality to support removal of the dishonest employee rebuttal. Chapter 7 provided another, 

the addition of multilateration. Although potentially one could trace back through the recursion 

in the process to connect the functions and the security requirement they support, it would be 

best if these functions remained strongly connected because the need for these functions could 

change or disappear if the security requirement changes. Currently, no mechanisms for 

maintaining such traceability are provided in the framework, beyond tracing mitigations to their 

rebuttals. Such mechanisms would be part of any eventual tool support. 
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8.1.3 Representing all Security Requirements as Constraints 

Representing some security requirements as constraints can feel awkward. For example, 

consider the following security management principle  

Encryption shall be of the highest quality available. 

Adding the above as a constraint on every functional requirement could be problematic, because 

many of the functions do not have any obvious relationship to encryption. The constraint would 

appear as a restriction on who is allowed to view/access the information being encrypted, but 

this is one level removed from the principle. 

Our position is that if a general security principle similar to the one presented above is to 

have any effect on the behavior of the system, it will appear either as a security requirement (a 

direct constraint) or as a trust assumption in an argument. For example, if the context includes a 

wireless LAN and there is an access constraint on the function, then the outer argument (proof) 

must include a premise stating that information on the LAN cannot be viewed/altered by 

unauthorized parties or, more probably, is viewable only by authorized parties. This premise 

could be supported by an inner argument referring to the quality of the encryption, thereby 

indirectly constraining the problem to satisfy the encryption goal. 

8.1.4 Representing Required Behavior as Constraints 

In many cases, constraints describe what a system must do, as opposed to what a system must 

not do. Although these cases are indeed constraints in the sense that they limit the choices 

available to the requirements engineer and architects, the terminology feels backwards to users. 

8.1.5 Consistency of Trust Assumptions 

One trust assumption should be consistent with (should not conflict with) another trust 

assumption. Given that by definition trust assumptions are not argued (if they are, they become 

claims), there is no mechanism in place to help assure this consistency. 
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A similar problem exists with respect to arguments. Nothing in the framework verifies that 

two arguments are consistent with each other, or that one argument depends on some trust 

assumption T, and some other argument depends on not T.  

Resolving these issues involves solving some difficult issues. See Section 8.2.1 for more 

detail. 

8.1.6 Trust Assumptions - Creation of Obligations 

Trust assumptions create what might be thought of as obligations on the domains to which 

the assumptions are attached. The domains are expected to perform as trusted, or to 

‘competently, honestly, and dependably’ conform to the trust assumption. One can say that 

domains are expected to discharge these obligations. This implies a stronger connection 

between domains and trust assumptions in inner arguments than currently exists in the 

framework.   

On the other hand, the idea that domains have obligations might lead to high-level 

(requirements) aspects. If multiple domains must discharge the same obligation, then there is 

crosscutting. This idea needs further exploring. 

8.1.7 Risk Analysis 

The framework as described in this thesis assumes a binary level of confidence in trust 

assumptions, leading to a binary level of confidence in arguments that use the trust assumptions. 

The framework, and especially the arguments, should incorporate non binary-valued risk 

analysis. There are three principle points in the framework where finer-grained risk should be 

considered. 

• Trust assumptions: trust assumptions should carry a level of confidence that the trust 

assumption will hold true. 

• Threat analysis: one should have an idea of the impact and likelihood of the realization of a 

threat, in order to ascertain whether mitigating the threat is worth the cost. 
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• Arguments: The levels of confidence of trust assumptions used in an argument should 

aggregate somehow, resulting in a level of confidence for the argument. The level of 

confidence in an argument should take into account the implicit trust assumption that all 

rebuttals have been considered. This level of confidence must next be converted to the 

likelihood that a vulnerability exists that permits a threat to be realized. 

8.1.8 Satisfaction Arguments – Constructing Outer Arguments 

One issue in our framework is that the outer arguments (the formal proofs) are constructed in 

an ad hoc manner. This creates a barrier to general acceptance of the framework. As we noted in 

Chapter 7 Section 7.2, the outer arguments are difficult to construct and explain. More research 

is needed on proof construction aids, perhaps built directly from a behavior and phenomena 

specifications. We should also explore the issues and challenges of using a temporal logic for 

behavior specification, so that we could use some of the verification tools available for these 

logics. 

8.1.9 Satisfaction Arguments – Constructing Inner Arguments 

One question that arises is “how does the analyst find rebuttals, grounds, and warrants?” 

Unfortunately, we have no recipe, but a method inspired by the how/why questions used in 

goal-oriented requirements engineering methods such as KAOS ((van Lamsweerde, 2001) and 

many others) suggests itself. Given a claim, the analyst asks ‘why is this claim true?’ and ‘what 

happens if it is not true?’ The analyst first chooses which claim is being argued, and then uses 

the ‘why’ question to gather the grounds that are pertinent to the claim along with the warrants 

that connect the grounds to the claim. The argument is then constructed. 

The analyst next asks the question “what can prevent this claim from being true?” The 

answers are the initial rebuttals. Some of these rebuttals will be challenges of the grounds or 

warrants; these create the need for sub-arguments where the challenged item is a claim. In other 

cases, the rebuttal will not be addressed, thereby creating an implicit trust assumption stating 
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that the event(s) described in the rebuttal are not to be considered. A third possibility is to add 

new grounds to the argument that remove the conditions assumed by the rebuttal. 

Referring again to Chapter 7 Section 7.2, the enthusiasm showed by people while 

constructing the arguments arguably mitigates the lack of a recipe. People enjoyed looking for 

ways to break assumptions. Although there is little evidence beyond impression and anecdote, it 

may be that the competitive aspect of finding rebuttals is a strength of our framework. 

8.1.10 Other Satisfaction Arguments in the Framework 

This thesis proposes satisfaction arguments for verifying that the security requirements can 

be satisfied by the system. There are two other security-related satisfaction arguments that could 

fit in the framework. The first is that the goals are complete and consistent; if all the goals are 

satisfied, then no harm can come through abuse of assets. The second is that the security 

requirements are complete and consistent; the set of security requirements has satisfied the set 

of security goals. One could also imagine an argument that the asset analysis is complete. This 

thesis does not address these other arguments. 

8.2 Future Work 

This section presents ideas for future research suggested by the work described in this thesis 

8.2.1 The Inner Argument 

One question that begs for attention is whether, and if so how, to formalize the inner 

arguments. If inner arguments are formalized, one can imagine tool support to validate the 

arguments, or perhaps even to generate proofs for them. However, before we continue we must 

determine what kinds of formal arguments are appropriate in our context.  

Fetzer, discussing the shortcomings of formal verification (1988), describes two different 

forms of argument: inductive and deductive. He characterizes them as follows  (Ibid: pg 1051): 
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“The features that distinguish (good) deductive arguments are the following: 

(a) they are demonstrative, i.e., if their premises were true, their conclusions could not be 

false (without contradiction); 

(b) they are non-ampliative, i.e., there is no information or content in their conclusions that 

is not already contained in their premises; and, 

(c) they are additive, i.e., the addition of further information in the form of additional 

premises can neither strengthen nor weaken these arguments, which are already 

maximally strong.”  

He next says that inductive arguments are non-demonstrative, ampliative, and non-additive. 

“Inductive arguments are meant to be knowledge-expanding, while deductive arguments are 

meant to be truth-preserving.” In other words, deductive arguments prove something about the 

world, and inductive arguments draw inferences about the world. Using these distinctions, he 

argues that deductive arguments can be used on algorithms, but not on programs. 

Fetzer’s distinction between algorithms and programs (1988) is very relevant to security. 

Algorithms are intellectual entities, and therefore can be verified using deduction because the 

messiness of the world is excluded from the model. Programs run in messy environments, what 

Fetzer calls causal environments, and therefore formal verification using deduction is dubious 

because the model does not include all possible behavior. He argues that inductive arguments do 

work in the causal environments because inductive arguments permit the conclusion to be false 

even if the premises are all true8. Inductive argumentation provides a structure, but does not 

place constraints on the world. This conclusion is significant when thinking about security, 

because one strategy used by attackers is to violate some assumption about the world, causing 

the system to do something outside what is intended. Consider using a deontic logic 

(McNamara, 2006) for the inner arguments, modeling arguments based on permission and 
                                                      

8 Having a false conclusion in the face of true premises can happen if an ampliative step becomes invalid through addition of 

another true premise. Consider the following example: 300 people queried said A, therefore most people say A.  This argument can 

be contradicted by adding the premise ‘no other people in the world will say A’, which does not contradict the first premise but does 

make the conclusion false. 
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obligation. The difficulty is that permission and obligation in the real world are fuzzy. What is 

permission, exactly? How is permission granted, when, and to whom? Are individuals who are 

indistinguishable by the system (e.g., use identical credentials) the same individuals with the 

same permissions? There is nothing in the world that forces an individual to fulfill an obligation, 

so what does ‘obligation’ in the model mean? Similar points can be made about epistemic logic 

(Hendricks & Symons, 2006), modeling belief and knowledge. For example, what does ‘knows’ 

mean in the face of overhearing a dinner conversation or discovery of secrets through 

insufficient statistical aggregation (see Section 5.9.3)? We conclude from Fetzer’s reasoning 

that a formalization of our inner arguments must be a formalization of the argument, and not a 

formalization of the world itself. 

Our conclusion is further strengthened by Gödel’s incompleteness theorem, which states 

loosely that “any consistent formal system must be incomplete” (MacKenzie, 2001: pg 90). 

Gödel showed that in such a system S, there will be some theorem A that is known to be true 

but cannot be proved true. The existence of A can permit paradox. In other words, the world is 

larger than the world described by the logical system. The real world is the largest of all. 

Research and more experience are required to determine how to formalize an argumentation 

system for the inner arguments. Argumentation systems being developed by the AI community 

for use in law (e.g., (Bench-Capon & Prakken, 2005; Bench-Capon & Staniford, 1995; Gordon, 

1993)) could be useful. The work in truth management systems (e.g., (de Kleer, 1986) and 

follow-ons) could also be useful. We have been asked whether our arguments would constitute 

due diligence in the same way that a safety argument does. This question has both technical and 

legal implications, both of which we are interested in exploring. Although the details of the 

arguments themselves are not directly relevant, the framework used in Bandara et al.’s work on 

security argumentation for firewalls should be further investigated (Bandara, Kakas, Lupu, & 

Russo, 2006).  

Hunter’s work on argument representation and consistency is very germane (e.g., Hunter, 

2004, 2005). In particular, the techniques for tolerating inconsistency of the knowledge base, 

and the incorporation of belief and relevance into a formal structure, are very interesting. 
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We also wish to explore tools for representing our Toulmin arguments, or something close to 

them. Tools like Compendium (Compendium Institute, 2005) and Araucaria (Reed, 2005) hold 

promise, albeit for different reasons. Compendium is designed to capture arguments, while 

Araucaria is designed to represent and check their syntactic consistency. 

8.2.2 Other Future Work 

Correcting or improving upon the questions & challenges raised in Section 8.1 is one source 

of future work. For example, the issue of consistency of trust assumptions and arguments could 

be addressed by using a representation for trust assumptions in which the vocabulary and 

semantics are specified. The difficulty will be expressiveness and, of course, the issues raised in 

Section 8.2.1. In addition, tool support for tracing the use of trust assumptions and propagating 

confidence would be helpful. 

The aspect-oriented requirements engineering (AORE) area (e.g., Rashid, Sawyer et al., 

2002; Rashid, Moreira et al., 2003) offers many possibilities to investigate. One area to look at 

is whether security requirements (constraints) are usefully mapped into design aspects, which 

should be possible if there is traceability from the functional requirements into the design. 

Another would be to examine whether trust assumptions exhibit aspect-like crosscutting 

properties, and if so whether these properties could be used for cross-system risk analysis. 

We want to investigate incorporating a risk analysis framework such as CORAS (2005) into 

our security requirements framework. Doing so would help capture rationale for why certain 

secondary requirements can be considered suitably equivalent to the original primary 

requirements. In addition, CORAS has tool support that should be useful. 

One area that should prove fruitful is connecting our security requirements with one of the 

security-related UML variants. Doing so should help propagate some benefits of design model 

checking up into the functional and asset analysis stages. Equally useful, the asset analysis in 

the framework should help inform the development of the model. Some preliminary work has 

been done related to integrating the framework with UMLSec (Jürjens, 2005); the possibilities 

seem promising. 
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We want to develop aids for constructing the outer arguments, but it is not at all obvious how 

best to accomplish this. One idea we want to pursue includes developing a model for the 

behavior specifications that would permit checking the validity of the behavior, an idea related 

to the incorporation of UML possibility described earlier. In this case, trust assumptions would 

become assertions in the model. Other ideas that may or may not lead somewhere include proof 

templates, tools that guide construction of a proof by asking questions about behavior, and 

exploring the derivation of the outer (formal) arguments using a pseudo natural language. 

Some other future work opportunities are: 

• Tool support for managing the artifacts generated while using the framework, and in 

particular the traceability between them. 

• Tools that can convert between the more powerful text representation and the more 

intuitive graphical representation. 

• Incorporation of trust assumptions and argumentation into other requirements frameworks, 

for example i* & KAOS. 

• Further use of the framework in industrial settings. 

8.3 Conclusion 

This thesis has presented our three contributions, and has shown how these contributions 

work together to improve capture and analysis of security requirements. To reiterate, the 

contributions are a security requirements framework, trust assumptions, and two-part 

satisfaction arguments. When using the three contributions during security requirements capture 

and analysis, a context is defined, the effects of security requirements within that context are 

understood, design constraints are taken into account, and the satisfaction of security 

requirements is established. The usefulness of these contributions has been validated.  

Our research is not unusual, in that it has provoked more questions and has suggested 

opportunities to extend our work. The extensions outlined in this chapter present significant 

challenges, which we look forward to addressing. 
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