Tool Support for Code Generation from a UMLsec
Property

Lionel Mon’[rieuxT
The Open University
Milton Keynes
United Kingdom
L.M.C.Montrieux@open.ac.uk

Jan Jurjens
TU Dortmund & Fraunhofer
ISST Milton Keynes
Dortmund
Germany

Charles B. Haley
The Open University

United Kingdom

http://jan.jurjens.de

Yijun Yu
The Open University
Milton Keynes
United Kingdom
Y.Yu@open.ac.uk

ABSTRACT

This demo presents a tool to generate code from verified
Role-Based Access Control properties defined using UMLsec.
It can either generate Java code, or generate Java code for
the UML model and AspectJ code for enforcing said RBAC
properties. Both approaches use the Java Authentication
and Authorization Service (JAAS) to enforce access control.

Categories and Subject Descriptors: D.2.2 Software
Engineering: Design Tools and Techniques [Computer-aided
software engineering (CASE)]

General Terms: Security

1. INTRODUCTION

Security requirements can be made explicit on the design
level, such as annotations on a UML model. UMLsec [4]
extends UML to allow one to express security properties on
a model, but it is still the developer’s responsibility to im-
plement the code that will actually enforce those properties.
This process can generate bugs and will not give any guar-
antee about how the implementation conforms to the model.

In this demo, we present a tool that generates Java and
AspectJ code from a UML with a verified UMLsec property.
It can either generate only Java code, or, alternatively, im-
plement the security property using AspectJ while still using
Java for the functional code. The tool also has other fea-
tures for UMLsec models verification that are not discussed
here.

The next sections are organised as follows: we first give
a short overview of UMLsec in section 2, then in section 3

*This work was partially supported by the EU project “Se-
curity Engineering for Lifelong Evolvable Systems (Secure
Change)” (ICT-FET-231101)

TPart of this author’s work was done as a MSc student at
the University of Namur, Belgium, under the supervision of
Pierre-Yves Schobbens and Hubert Toussaint

Copyright is held by the author/owner(s).
ASE’10, September 20-24, 2010, Antwerp, Belgium
ACM 978-1-4503-0116-9/10/09.

Pierre-Yves Schobbens
University of Namur
Namur
Belgium

pyschobbens@fundp.ac.be hto@info.fundp.ac.be

Hubert Toussaint
University of Namur
Namur
Belgium

UMLsec model

0O generation Java
Nory N L[

Verification w
[YES]
AO generation Java + Aspect]

Figure 1: Generating implementation code for
UMLsec properties

UMLsec tool

we describe the tool, with a particular attention towards the
new features we are focusing on in this demo. In section 4
discusses related work, and we finally discuss future works
in section 5.

2. EXPRESSING ACCESS CONTROL AS AN
UMLsec PROPERTY

UMLsec [4] is an UML profile allowing one to define secu-
rity properties, using standard UML extension mechanisms
like stereotypes and tagged values. One of those properties
that can be defined on a UML model is Role-Based Access
Control. A UML activity diagram can be annotated to as-
sign roles to users, grant permissions to roles, and protect
actions. Each swimlane in the activity diagram represents
a user. It is therefore possible to check the defined RBAC
property by making sure no protected action is in the swim-
lane of a user that is not allowed to perform it. Currently,
only a subset of the RBAC standard is supported by the
UMLsec specification. For example, it is assumed that all
roles are granted to a user at the start of a session, and that
no roles can be dropped or delegated to another user.

3. ENFORCING ACCESS CONTROL PROP-
ERTIES THROUGH CODE GENERATION

The UMLsec tool [2] allows one to check whether or not
a model enforces a UMLsec property [5]. It also allows one
to generate code conforming to the model.



—_

T W N =

public void myMethod() {
AccessController.checkPermission (new
MyClassPermission ("myMethod”) ) ;}

public pointcut authOperations() execution (
public void MyClass.myMethod() ) ;

Subject.doAsPrivileged (authenticatedSubject ,
new PrivilegedAction() {
public Object run() {
MyClass.myMethod() ;
return null;}}, null);

Figure 2: Sample code added to protect a method
and to call it

This demo focuses on a new feature: code generation from
a UML model with an UMLsec RBAC property, as described
on Figure 1. Given an UML model with UMLsec annota-
tions describing an RBAC property, we generate code that
conforms to the RBAC property. Two different approaches
have been implemented, both using the JAAS [1] framework:
the first one produces only Java code, while the second one
uses AspectJ to enforce the RBAC property.

Both code generation techniques have been implemented
using Aspect-Oriented Programming [3]. While code gen-
eration from the UML model is done in Java, we use As-
pectJ to add generation of code enforcing the UMLsec prop-
erty, which has several advantages over an Object-Oriented
only implementation. First, it allows us to clearly separate
the code generation of the UML model itself from the code
generation of the associated UMLsec property. Second, it
allows us to easily extend the tool to generate code from
other UMLsec properties by simply writing a new aspect,
and reusing the existing Java code for generating to code
corresponding to the UML model. And finally, it allows
us to study the potential conflicts between several UMLsec
properties in terms of an aspect composition problem.

3.1 Object-Oriented code generation

The first approach produces only Java code, both for im-
plementing the UML model and the UMLsec property. The
aspect responsible for generating code enforcing the RBAC
property simply monitors the code generation process, and
adds the necessary lines of code in the places where they
are needed. The access control code is therefore spread all
over the code base. While it might make modifications like
adding (resp.removing) access control protection to a non-
protected (resp. from a protected) method or attribute,
it has the advantage of not requiring the use of Aspect-
Oriented Programming and its drawbacks, like potential con-
flicts between aspects or negative impact on performances.
Figure 2 shows an example of the lines of code added to
protect a call to a myMethod method in a MyClass class, and
then the lines of code added to call it.

3.2 Aspect-Oriented code generation

The second approach produces Java code for implement-
ing the UML model, but the UMLsec property is imple-
mented using AspectJ. Here, the RBAC code generation as-
pect monitors the code generation and simply creates an
aspect while the functional code is being generated. This
keeps the functional code separated from the authorisation
code, making the modification of the code easier, and helping
maintaining a traceability link between the access control
code and the UMLsec property. Furthermore, any subse-

Figure 3: Sample code added to protect a method
called myMethod to an access control aspect

quent modification of the functional code will require little
or no modification of the access control aspects. Figure 3
shows the same example as Figure 2, but using aspects.

4. RELATED WORK

There exist a lot of tools for generating Java (or other
Object-Oriented language) code from UML models, like IBM’s
Rational Rose or ArgoUML. None of them, however, allows
one to verify that a model enforces an UMLsec RBAC prop-
erty, and generate code that conforms to it.

SecureUML [6] is an alternative to UMLsec for develop-
ing RBAC properties on a UML model. The authors devel-
oped a prototype implementation of their approach to trans-
late RBAC properties expressed using SecureUML into EJB
code. However, their approach does not include model-level
verification as UMLsec does prior to the code generation,
and they do not offer the opportunity to chose between sev-
eral paradigms for the target code.

S. CONCLUSION AND FUTURE WORK

The tool we presented allows one to generate code from a
RBAC property expressed in UMLsec in two different ways:
by generating only Java code, or by generating Java code for
the functional model as well as AspectJ code for enforcing
the RBAC property. The generation of the code that en-
forces access control properties is implemented in AspectJ.

In future work, we will add support for code generation
using other security frameworks than JAAS, like EJB. We
will also work on code generation from other UMLsec prop-
erties. This will raise new and interesting challenges, as
we will need to generate code that enforces several different
properties, without introducing conflicts.

6. REFERENCES

[1] JAAS tutorials, 2001.
http://java.sun.com/j2se/1.5.0/docs/guide/security /jaas/
tutorials/index.html (Last accessed September 2009).

[2] UMLsec tool, 2001-2010. Available at
http://ls14-www.cs.tu-dortmund.de/main2/jj/umlsectool (Last
accessed May 2010).

[3] J. Irwin, G. Kiczales, J. Lamping, J.-M. Loingtier, C. Maeda,
A. Mendhekar, and C. Videira Lopes. Aspect-oriented
programming. Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), June 1997.

[4] J. Jiirjens. Secure Systems Development with UML.
Springer-Verlag, 2005.

[5] J. Jiirjens and Y. Yu. Tools for model-based security
engineering: models vs. code. In ASE ’07: Proceedings of the
twenty-second IEEE/ACM international conference on
Automated software engineering, pages 545-546, New York,
NY, USA, 2007. ACM.

[6] T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A
UML-based modeling language for model-driven security. In
UML ’02: Proceedings of the 5th International Conference
on The Unified Modeling Language, pages 426—441, 2002.




