
Using Trust Assumptions in Security Requirements Engineering

Charles B. Haley, Robin C. Laney, Bashar Nuseibeh
Security Requirements Group

Department of Computing
The Open University, UK

{C.B.Haley, R.C.Laney, B.A.Nuseibeh}@open.ac.uk

Jonathan D. Moffett
Department of Computer Science

University of York, UK
jdm@cs.york.ac.uk

Abstract

Assumptions about the trustworthiness of the various
components of a system (including human components)
can have a significant effect on the specifications derived
from the system’s requirements. This position paper pre-
sents some early efforts to understand the relationships
between general requirements, security requirements, and
trust assumptions made during problem analysis. An
outline of an approach for reasoning about security
requirements and trust assumptions is provided.

1. Introduction

Security requirements describe constraints on the
functionality of a system under consideration [7]. A
requirements engineer should reason about these
constraints in the absence of a particular implementation
of the system; requirements are optative, describing
desired behavior instead of existing behavior [5].
Descriptions of the desired behavior of individual parts of
the system, hereafter referred to as domains, are also
optative. Descriptions of the actual behavior of domains
(their inputs, outputs, and states visible at their interfaces)
are indicative; they describe an objective truth about the
behavior of the domain. Unfortunately, as in all things
human, there are assumptions behind the meaning of
objectively true. One could say “a door opens when
unlatched and pulled”, which is true unless someone has
glued the door to the doorframe. One job of an analyst is
to make decisions about how much to trust the supplied
indicative properties of domains that make up the system.
These decisions are trust assumptions, and they have a
fundamental impact on how the system is realized [9].

To explore the impact of trust assumptions on how a
system is realized, we must start by looking at
Requirements Engineering. Requirements engineering is
concerned with enumerating the goals for a system under
consideration and producing an optative description of the
system’s desired behavior [6]. To accomplish this feat, it
must be true that a system is intended to solve a given
problem when placed in a given context. A problem
description frames the problem, helping ensure that the

original intentions are not lost. The context provides
indicative information about the domains that are part of
the problem.

One can reason about the behavior of a system using
goals. Goals can be general or specific; general goals
must be refined to specific goals. Goals are optative,
defining what the system is to accomplish (the desired
behavior of the system). Once sufficiently refined, goals
are operationalized, or assigned to a domain that can
satisfy the goal. An operationalized goal is a requirement.

All problems involve the interaction of domains that
exist in the world. Domains exist either physically (e.g.
people) or logically (e.g. data). The Problem Frames
notation [5] is useful for diagramming the domains
involved in a problem and the interconnection between
them. For example, assume that goal reduction produces
the requirement “open door when the door-open button is
pushed.” Figure 1 illustrates the domains that could
satisfy the requirement; a basic automatic door system
with three domains. One domain is the door mechanism
domain, capable of opening and shutting the door. A
second is the domain requesting that the door be opened;
this domain includes both the ‘button’ to be pushed and
the human pushing the button. The third is the machine,
the domain being designed to fulfill the requirement that
the door open when the button is pushed. The oval
presents the requirement.

Every domain has interfaces, which are defined by the

phenomena visible to other domains. Phenomena are
indicative; they can be observed. For example, the
person+button domain above might produce the event
phenomena ButtonDown and ButtonUp. Alternatively, it

Control
Machine

Figure 1 – A basic Problem Frames diagram

Door
Mechanism

Person +
Button

Open door
when button

pushed

might produce the single event OpenDoor. The interplay
of phenomena between the machine and the connected
domains defines how the system accomplishes the goal.
The specification uses the interplay to describe how the
requirements are satisfied [12].

It is very important to note that a specification depends
on the phenomena visible at the boundary of the domains,
where a requirement does not. For example, in the context
of a building we might find the requirements ‘permit
passage from one room to another’ and ‘physically
separate rooms when possible’. Clearly, these
requirements are describing doors. Equally as clearly,
they do not specify how the doors operate. The architect
must choose the door domain(s) for the system. One
might satisfy the requirements with a blanket, a traditional
door, a powered automatic door, or some sort of matter
transmitter. Each domain implementation presents
different phenomena at its boundary (i.e. they work
differently), and the resulting system specification must
consider these differences. However, the requirements do
not change.

When enumerating requirements, it is not sufficient
merely to describe a system’s behavior. In addition, one
must note any security constraints on the behavior.
Constraints arising from security concerns are called
security requirements. The word ‘requirement’ is
important; the security requirements do not specify how
the constraint is satisfied, only what the constraint is.

Continuing with the (admittedly trivial) door example,
we might add the security constraint only family members
may pass through an internal door. How do we know if
an individual is a family member? At this point in the
process, we do not know. We do know that some domain
in the system must be capable of answering the question,
and that the specification of that domain must include
appropriate phenomena to make the answer known to
other domains that need it.

One can easily imagine ways to answer the question.
Perhaps a biometric approach is appropriate. Perhaps the
matter transmitter will do a DNA test during transmission
and reintegrate the person on the lawn if not a family
member. Perhaps the only people in the building are
family members because some other mechanism (perhaps
a security guard) already blocked the interlopers’ access.

In the latter case, the answer to the question “is the
person a family member?” is known in advance to be
‘yes’. However, accepting that proposition requires the
analyst to trust that some other domain will prevent
intruders from entering the building. The other domain
claims to satisfy the constraint or participate in its
satisfaction. In the example, the analyst trusts the other
mechanism to satisfy the ‘verify family membership’
constraint imposed on the machine charged with opening
doors. This trust assumption fundamentally affects how a
requirement is satisfied.

2. Security Requirements

Security requirements express constraints on the
behavior of a system. The constraints are intended to limit
system behavior to the smallest number of cases possible
while still behaving correctly. For example, a goal for an
ATM might be ‘provide cash to customers’. This goal is
obviously overly broad from a security point of view. By
providing constraints (security requirements), the
circumstances under which cash is provided are reduced.
Some examples of constraints might be:
• Only bank customers can get cash
• Only checking account holders can get cash
• The debited account must belong to the customer.

More formally, security requirements concern
operations on assets by actors. Without assets, there is
nothing of value to protect and constraints are not
necessary. If there are no operations (operations change
the state of the system-in-the-large in some way), then the
system is stable. If there are no actors, then operations are
not possible. If any of the three are eliminated, then a
discussion about security is uninteresting.

The security community describes the general
categories for constraints using the acronym CIA, and
more recently another A [8]:
• Confidentiality: limit visibility of the asset to those

actors authorized to see it. This is larger than ‘read
access to a file’. It can include visibility of a data
stream on a network or visibility of a paper on
someone’s desk.

• Integrity: ensure that the asset is not corrupted. As
above, this is larger than ‘write access to a file’,
including triggering transactions that should not
occur, changing contents of backup media, or making
incorrect entries in a paper-based accounting system.

• Accessibility: ensure that the asset is readily
accessible to actors that need it. The common
counterexample is preventing a company from doing
business by denying it access to something important,
such as access to its computer systems or its offices.

• Authentication: ensure that the provenance of the
asset or actor is known. A common example is the
simple login. More complicated examples include
mutual authentication (e.g. exchange of cryptography
keys), and intellectual property rights management.

One reasons about security constraints by applying a
qualitative reasoning method using these categories.

3. Trust Assumptions

Recall that a requirement describes what a system is to
accomplish. From the point of view of the analyst, how a
requirement is satisfied depends on the characteristics of
the domains in the problem. An analogous relationship

exists between security requirements and trust
assumptions; how security requirements are satisfied
depends on the trust assumptions made by the analyst.

For our purposes, we use the definition of trust
proposed by Grandison & Sloman [3]: “[Trust] is the
quantified belief by a trustor with respect to the
competence, honesty, security and dependability of a
trustee within a specified context”. In our case, the analyst
trusts that some domain will participate ‘competently and
honestly’ in the satisfaction of a constraint.

The notion of trust assumptions can be illustrated using
the door example. The constraint ‘only family members
may pass through an internal door’ was attached to the
requirement. The analyst’s trust assumptions could lead
the analyst to propose the following specifications:
• Assumption 1: only trust the problem context

controlled by the analyst. A domain must exist in the
context that can verify family membership for an
internal door, and a door controller must exist that is
able to make use of the check. For example, the
family-member check domain might perform a DNA
test or a voiceprint test, and then pass the results to
the door controller. Alternatively, a guard can be
posted at each door, and the guard decides who gets
through by pushing the button to open the door.

• Assumption 2: the outer door to the building, which
is not in the context of the problem, is trusted. All
people passing through that door are verified as
family members, thus all people passing through the
inner door are family members. Not only do we not
need a family-member-checking domain, but also we
might not need a door controller domain. A blanket
will do for a door.

• Assumption 3: only one family lives on the planet.
All people entering the building can only be from one
family, satisfying the requirement. No check at the
outer door of the building is needed. This example
shows that the analyst can trust a domain extremely
far removed from the immediate problem.

The cases show that the domains that are needed to realize
the system depend on the analyst’s trust assumptions. In
the first case, the system contains a family-membership
checker and a door controller, and the two must interact to
function properly. In the second and third cases, no
family-membership-check domain is needed. The same
requirement applies to all three cases, but the realizations
of the requirement are radically different.

Consider the ATM example presented earlier. A bank
may tell the analyst that it trusts its customers to be
honest, but that it trusts no one else. Using this trust
assumption, the analyst could make several architectural
decisions. The ATM must somehow verify that the person
is an account holder. It might then ask the person for the
account number and the amount, and simply supply the
cash. Alternatively, the ATM might be a special booth

that customers can enter after being authenticated via a
retinal scan or by a security guard. The customer finds a
bag of money and a pad of paper in the booth, takes as
much money as desired, writes the amount and the
account number on the paper, and leaves. Both systems
conform to the requirements, given the trust assumptions
the analyst makes.

More formally, a trust assumption is an assumption by
an analyst that the specification of a domain can depend
on certain properties of some other domain in order to
satisfy a security requirement. The analyst trusts the
assumption to be true. The assumption results in a relation
between two domains; the satisfaction of a security
requirement by one domain depends upon the properties
of another. This dependency relation is represented as a
directed arc from the depending domain to the domain
considered to have the necessary properties.

To ensure that the specification conforms to the
security requirements, every security constraint must be
matched with some dependency relation(s). By creating
the relations, the analyst is asking the ‘owners’ of the
depended-upon domains to agree to the ‘contract’ implied
by the relation. The target domains in the dependency
relations are not necessarily in the context of the problem
being solved. Figure 2 illustrates this by overlaying the
dependency relation onto the diagram from Figure 1,
using the second assumption: that there is a guard at the
front door of the building.

The dependency relations document the analyst’s trust

assumptions. The analyst verifies the set of assumptions
described by the relations, satisfying him- or herself that
the assumptions are valid and consistent. The relations are
also useful during the security validation process, during
which the depended-upon properties must be verified.

4. Related Work

Several teams are looking at the role of trust in security
requirements engineering. In the i* framework [10, 11],
Yu, Lin, & Mylopoulos take an ‘actor, intention, goal’

Figure 2 – Problem diagram showing the dependency

Door
Mechanism

Person +
Button

Open door when
button pushed

by family
members only

Control
Machine

Door Problem Context

Security
Guard Dependency relation

family
members only

approach where security and trust relationships within the
model are modeled as “softgoals”: goals that have no
quantitative measure for satisfaction. The Tropos project
[2] uses the i* framework, adding on wider lifecycle
coverage. Gans et al [1] add distrust and “speech acts”.
None of the models capture the analyst’s assumptions
about the domains that make up the solution to the
problem. As such, an i* model complements the approach
presented here, and in fact can be used to determine the
goals and requirements.

He and Antón [4] are concentrating on privacy,
working on mechanisms to assist people to trust privacy
policies, for example on web sites. They propose a
context-based access model. Context is determined using
“purpose” (why is information being accessed),
“conditions” (what conditions must be satisfied before
access can be granted), and “obligations” (what actions
must be taken before access can be granted. The
framework describes run-time properties, not the analyst’s
assumptions about the domains forming the solution.

5. Conclusions and Future Work

We have provided an informal approach for reasoning
about security requirements. The approach makes a strong
distinction between system requirements and machine
specifications, permitting the analyst to choose how to
conform to the requirements. The trust assumptions
embedded in the domain inform the analyst, enabling the
analyst to choose between alternate ways of satisfying the
requirements.

There is a great deal of work left to do. Our approach
starts with requirements derived from goals before
reasoning about security constraints, so integrating the
approach with a goal-oriented method would help. KAOS
([6] etc) is a good candidate as may be i*. Such an
integration would profit greatly from having a logic to
express the security requirements; analysis could then to
some extent be automated.

The qualitative reasoning approach would be helped
by guidance for determining security requirements. The
security categories assist by focusing on crosscutting
concerns, but these need further elaboration. Templates
could help the process, as could taxonomies of standard
approaches.

Capturing trust assumptions in some semi-formal way
would help ensure that the resulting relations are con-
sistent; the logic developed in the SULTAN project holds
promise [3]. It also seems that there are layers of
assumptions, where one assumption is in reality part of a
larger one; representing these layers would be a step
forward. Lastly, incorporating risk into the dependency
relations would help resolve problems exemplified by
statements of the form “I trust you, but …”

Acknowledgements: The financial support of the
Leverhulme Trust is gratefully acknowledged. Thanks
also go to Michael Jackson for many insights about
Problem Frames and requirements, and to Anthony
Meehan for his comments that started us down this path.

References
1. Gans, G., et al. "Requirements Modeling for Organization
Networks: A (Dis)Trust-Based Approach," In 5th IEEE
International Symposium on Requirements Engineering (RE'01).
Toronto, Canada: IEEE Computer Society Press, 27-31 Aug
2001, 154-165.
2. Giorgini, P., Massacci, F., & Mylopoulos, J. Requirement
Engineering Meets Security: A Case Study on Modelling Secure
Electronic Transactions by VISA and Mastercard, Department
of Information and Communication Technology, DIT-03-027.
University of Trento, May 2003.
3. Grandison, T., & Sloman, M. "Trust Management Tools for
Internet Applications," In The First International Conference on
Trust Management. Heraklion, Crete, Greece: Springer Verlag,
28-30 May 2003.
4. He, Q., & Antón, A. I. "A Framework for Modeling Privacy
Requirements in Role Engineering" in Ninth International
Workshop on Requirements Engineering: Foundation for
Software Quality, The 15th Conference on Advanced
Information Systems Engineering (CAiSE'03),
Klagenfurt/Velden, Austria, 16 Jun 2003.
5. Jackson, M. Problem Frames. Addison Wesley, 2001.
6. van Lamsweerde, A. "Goal-Oriented Requirements
Engineering: A Guided Tour," In 5th IEEE International
Symposium on Requirements Engineering (RE'01). Toronto,
Canada: IEEE Computer Society Press, 27-31 Aug 2001, 249-
263.
7. Moffett, J. D., & Nuseibeh, B. A Framework for Security
Requirements Engineering, Department of Computer Science,
YCS368. University of York, UK, 2003.
8. Pfleeger, C. P., & Pfleeger, S. L. Security in Computing.
Prentice Hall, 2002.
9. Viega, J., Kohno, T., & Potter, B. "Trust (and Mistrust) in
Secure Applications," Communications of the ACM 44(2), Feb,
2001: 31-36.
10. Yu, E. "Towards Modelling and Reasoning Support for
Early-Phase Requirements Engineering," In Proceedings of the
Third IEEE International Symposium on Requirements
Engineering (RE'97). Annapolis MD USA, 6-10 Jan 1997, 226-
235.
11. Yu, E., & Liu, L. "Modelling Trust for System Design Using
the i* Strategic Actors Framework," In R. Falcone, M. P. Singh,
& Y.-H. Tan, eds. Trust in Cyber-societies, Integrating the
Human and Artificial Perspectives. Springer-Verlag Heidelberg,
2001: 175-194.
12. Zave, P., & Jackson, M. "Four Dark Corners of
Requirements Engineering," ACM Transactions on Software
Engineering and Methodology 6(1), Jan, 1997: 1-30.

