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Abstract 

Assumptions about the trustworthiness of the various 
components of a system (including human components) 
can have a significant effect on the specifications derived 
from the system’s requirements. This position paper pre-
sents some early efforts to understand the relationships 
between general requirements, security requirements, and 
trust assumptions made during problem analysis. An 
outline of an approach for reasoning about security 
requirements and trust assumptions is provided. 

 

1. Introduction 

Security requirements describe constraints on the 
functionality of a system under consideration [7]. A 
requirements engineer should reason about these 
constraints in the absence of a particular implementation 
of the system; requirements are optative, describing 
desired behavior instead of existing behavior [5]. 
Descriptions of the desired behavior of individual parts of 
the system, hereafter referred to as domains, are also 
optative. Descriptions of the actual behavior of domains 
(their inputs, outputs, and states visible at their interfaces) 
are indicative; they describe an objective truth about the 
behavior of the domain. Unfortunately, as in all things 
human, there are assumptions behind the meaning of 
objectively true. One could say “a door opens when 
unlatched and pulled”, which is true unless someone has 
glued the door to the doorframe. One job of an analyst is 
to make decisions about how much to trust the supplied 
indicative properties of domains that make up the system. 
These decisions are trust assumptions, and they have a 
fundamental impact on how the system is realized [9]. 

To explore the impact of trust assumptions on how a 
system is realized, we must start by looking at 
Requirements Engineering. Requirements engineering is 
concerned with enumerating the goals for a system under 
consideration and producing an optative description of the 
system’s desired behavior [6]. To accomplish this feat, it 
must be true that a system is intended to solve a given 
problem when placed in a given context. A problem 
description frames the problem, helping ensure that the 

original intentions are not lost. The context provides 
indicative information about the domains that are part of 
the problem.  

One can reason about the behavior of a system using 
goals. Goals can be general or specific; general goals 
must be refined to specific goals. Goals are optative, 
defining what the system is to accomplish (the desired 
behavior of the system). Once sufficiently refined, goals 
are operationalized, or assigned to a domain that can 
satisfy the goal. An operationalized goal is a requirement.  

All problems involve the interaction of domains that 
exist in the world. Domains exist either physically (e.g. 
people) or logically (e.g. data). The Problem Frames 
notation [5] is useful for diagramming the domains 
involved in a problem and the interconnection between 
them. For example, assume that goal reduction produces 
the requirement “open door when the door-open button is 
pushed.” Figure 1 illustrates the domains that could 
satisfy the requirement; a basic automatic door system 
with three domains. One domain is the door mechanism 
domain, capable of opening and shutting the door. A 
second is the domain requesting that the door be opened; 
this domain includes both the ‘button’ to be pushed and 
the human pushing the button. The third is the machine, 
the domain being designed to fulfill the requirement that 
the door open when the button is pushed. The oval 
presents the requirement. 

 
Every domain has interfaces, which are defined by the 

phenomena visible to other domains. Phenomena are 
indicative; they can be observed. For example, the 
person+button domain above might produce the event 
phenomena ButtonDown and ButtonUp. Alternatively, it 
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might produce the single event OpenDoor. The interplay 
of phenomena between the machine and the connected 
domains defines how the system accomplishes the goal. 
The specification uses the interplay to describe how the 
requirements are satisfied [12]. 

It is very important to note that a specification depends 
on the phenomena visible at the boundary of the domains, 
where a requirement does not. For example, in the context 
of a building we might find the requirements ‘permit 
passage from one room to another’ and ‘physically 
separate rooms when possible’. Clearly, these 
requirements are describing doors. Equally as clearly, 
they do not specify how the doors operate. The architect 
must choose the door domain(s) for the system. One 
might satisfy the requirements with a blanket, a traditional 
door, a powered automatic door, or some sort of matter 
transmitter. Each domain implementation presents 
different phenomena at its boundary (i.e. they work 
differently), and the resulting system specification must 
consider these differences. However, the requirements do 
not change. 

When enumerating requirements, it is not sufficient 
merely to describe a system’s behavior. In addition, one 
must note any security constraints on the behavior. 
Constraints arising from security concerns are called 
security requirements. The word ‘requirement’ is 
important; the security requirements do not specify how 
the constraint is satisfied, only what the constraint is. 

Continuing with the (admittedly trivial) door example, 
we might add the security constraint only family members 
may pass through an internal door. How do we know if 
an individual is a family member? At this point in the 
process, we do not know. We do know that some domain 
in the system must be capable of answering the question, 
and that the specification of that domain must include 
appropriate phenomena to make the answer known to 
other domains that need it. 

One can easily imagine ways to answer the question. 
Perhaps a biometric approach is appropriate. Perhaps the 
matter transmitter will do a DNA test during transmission 
and reintegrate the person on the lawn if not a family 
member. Perhaps the only people in the building are 
family members because some other mechanism (perhaps 
a security guard) already blocked the interlopers’ access.  

In the latter case, the answer to the question “is the 
person a family member?” is known in advance to be 
‘yes’. However, accepting that proposition requires the 
analyst to trust that some other domain will prevent 
intruders from entering the building. The other domain 
claims to satisfy the constraint or participate in its 
satisfaction. In the example, the analyst trusts the other 
mechanism to satisfy the ‘verify family membership’ 
constraint imposed on the machine charged with opening 
doors. This trust assumption fundamentally affects how a 
requirement is satisfied. 

2. Security Requirements 

Security requirements express constraints on the 
behavior of a system. The constraints are intended to limit 
system behavior to the smallest number of cases possible 
while still behaving correctly. For example, a goal for an 
ATM might be ‘provide cash to customers’. This goal is 
obviously overly broad from a security point of view. By 
providing constraints (security requirements), the 
circumstances under which cash is provided are reduced. 
Some examples of constraints might be: 
• Only bank customers can get cash 
• Only checking account holders can get cash 
• The debited account must belong to the customer. 

More formally, security requirements concern 
operations on assets by actors. Without assets, there is 
nothing of value to protect and constraints are not 
necessary. If there are no operations (operations change 
the state of the system-in-the-large in some way), then the 
system is stable. If there are no actors, then operations are 
not possible. If any of the three are eliminated, then a 
discussion about security is uninteresting. 

The security community describes the general 
categories for constraints using the acronym CIA, and 
more recently another A [8]: 
• Confidentiality: limit visibility of the asset to those 

actors authorized to see it. This is larger than ‘read 
access to a file’. It can include visibility of a data 
stream on a network or visibility of a paper on 
someone’s desk. 

• Integrity: ensure that the asset is not corrupted. As 
above, this is larger than ‘write access to a file’, 
including triggering transactions that should not 
occur, changing contents of backup media, or making 
incorrect entries in a paper-based accounting system. 

• Accessibility: ensure that the asset is readily 
accessible to actors that need it. The common 
counterexample is preventing a company from doing 
business by denying it access to something important, 
such as access to its computer systems or its offices. 

• Authentication: ensure that the provenance of the 
asset or actor is known. A common example is the 
simple login. More complicated examples include 
mutual authentication (e.g. exchange of cryptography 
keys), and intellectual property rights management. 

One reasons about security constraints by applying a 
qualitative reasoning method using these categories. 

3. Trust Assumptions 

Recall that a requirement describes what a system is to 
accomplish. From the point of view of the analyst, how a 
requirement is satisfied depends on the characteristics of 
the domains in the problem. An analogous relationship 



exists between security requirements and trust 
assumptions; how security requirements are satisfied 
depends on the trust assumptions made by the analyst. 

For our purposes, we use the definition of trust 
proposed by Grandison & Sloman [3]: “[Trust] is the 
quantified belief by a trustor with respect to the 
competence, honesty, security and dependability of a 
trustee within a specified context”. In our case, the analyst 
trusts that some domain will participate ‘competently and 
honestly’ in the satisfaction of a constraint. 

The notion of trust assumptions can be illustrated using 
the door example. The constraint ‘only family members 
may pass through an internal door’ was attached to the 
requirement. The analyst’s trust assumptions could lead 
the analyst to propose the following specifications: 
• Assumption 1: only trust the problem context 

controlled by the analyst. A domain must exist in the 
context that can verify family membership for an 
internal door, and a door controller must exist that is 
able to make use of the check. For example, the 
family-member check domain might perform a DNA 
test or a voiceprint test, and then pass the results to 
the door controller. Alternatively, a guard can be 
posted at each door, and the guard decides who gets 
through by pushing the button to open the door. 

• Assumption 2: the outer door to the building, which 
is not in the context of the problem, is trusted. All 
people passing through that door are verified as 
family members, thus all people passing through the 
inner door are family members. Not only do we not 
need a family-member-checking domain, but also we 
might not need a door controller domain. A blanket 
will do for a door. 

• Assumption 3: only one family lives on the planet. 
All people entering the building can only be from one 
family, satisfying the requirement. No check at the 
outer door of the building is needed. This example 
shows that the analyst can trust a domain extremely 
far removed from the immediate problem. 

The cases show that the domains that are needed to realize 
the system depend on the analyst’s trust assumptions. In 
the first case, the system contains a family-membership 
checker and a door controller, and the two must interact to 
function properly. In the second and third cases, no 
family-membership-check domain is needed. The same 
requirement applies to all three cases, but the realizations 
of the requirement are radically different. 

Consider the ATM example presented earlier. A bank 
may tell the analyst that it trusts its customers to be 
honest, but that it trusts no one else. Using this trust 
assumption, the analyst could make several architectural 
decisions. The ATM must somehow verify that the person 
is an account holder. It might then ask the person for the 
account number and the amount, and simply supply the 
cash. Alternatively, the ATM might be a special booth 

that customers can enter after being authenticated via a 
retinal scan or by a security guard. The customer finds a 
bag of money and a pad of paper in the booth, takes as 
much money as desired, writes the amount and the 
account number on the paper, and leaves. Both systems 
conform to the requirements, given the trust assumptions 
the analyst makes. 

More formally, a trust assumption is an assumption by 
an analyst that the specification of a domain can depend 
on certain properties of some other domain in order to 
satisfy a security requirement. The analyst trusts the 
assumption to be true. The assumption results in a relation 
between two domains; the satisfaction of a security 
requirement by one domain depends upon the properties 
of another. This dependency relation is represented as a 
directed arc from the depending domain to the domain 
considered to have the necessary properties.  

To ensure that the specification conforms to the 
security requirements, every security constraint must be 
matched with some dependency relation(s). By creating 
the relations, the analyst is asking the ‘owners’ of the 
depended-upon domains to agree to the ‘contract’ implied 
by the relation. The target domains in the dependency 
relations are not necessarily in the context of the problem 
being solved. Figure 2 illustrates this by overlaying the 
dependency relation onto the diagram from Figure 1, 
using the second assumption: that there is a guard at the 
front door of the building. 

 
The dependency relations document the analyst’s trust 

assumptions. The analyst verifies the set of assumptions 
described by the relations, satisfying him- or herself that 
the assumptions are valid and consistent. The relations are 
also useful during the security validation process, during 
which the depended-upon properties must be verified. 

4. Related Work 

Several teams are looking at the role of trust in security 
requirements engineering. In the i* framework [10, 11], 
Yu, Lin, & Mylopoulos take an ‘actor, intention, goal’ 

Figure 2 – Problem diagram showing the dependency 
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approach where security and trust relationships within the 
model are modeled as “softgoals”: goals that have no 
quantitative measure for satisfaction. The Tropos project 
[2] uses the i* framework, adding on wider lifecycle 
coverage. Gans et al [1] add distrust and “speech acts”. 
None of the models capture the analyst’s assumptions 
about the domains that make up the solution to the 
problem. As such, an i* model complements the approach 
presented here, and in fact can be used to determine the 
goals and requirements. 

He and Antón [4] are concentrating on privacy, 
working on mechanisms to assist people to trust privacy 
policies, for example on web sites. They propose a 
context-based access model. Context is determined using 
“purpose” (why is information being accessed), 
“conditions” (what conditions must be satisfied before 
access can be granted), and “obligations” (what actions 
must be taken before access can be granted. The 
framework describes run-time properties, not the analyst’s 
assumptions about the domains forming the solution. 

5. Conclusions and Future Work 

We have provided an informal approach for reasoning 
about security requirements. The approach makes a strong 
distinction between system requirements and machine 
specifications, permitting the analyst to choose how to 
conform to the requirements. The trust assumptions 
embedded in the domain inform the analyst, enabling the 
analyst to choose between alternate ways of satisfying the 
requirements. 

There is a great deal of work left to do. Our approach 
starts with requirements derived from goals before 
reasoning about security constraints, so integrating the 
approach with a goal-oriented method would help. KAOS 
( [6] etc) is a good candidate as may be i*. Such an 
integration would profit greatly from having a logic to 
express the security requirements; analysis could then to 
some extent be automated. 

The qualitative reasoning approach would be helped 
by guidance for determining security requirements. The 
security categories assist by focusing on crosscutting 
concerns, but these need further elaboration. Templates 
could help the process, as could taxonomies of standard 
approaches. 

Capturing trust assumptions in some semi-formal way 
would help ensure that the resulting relations are con-
sistent; the logic developed in the SULTAN project holds 
promise [3]. It also seems that there are layers of 
assumptions, where one assumption is in reality part of a 
larger one; representing these layers would be a step 
forward. Lastly, incorporating risk into the dependency 
relations would help resolve problems exemplified by 
statements of the form “I trust you, but …” 
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