
Practical LR Error Recoveryt

Susan L. Graham
Computer Science Division

University of California, Berkeley
Berkeley, Ca. 94720

Charles B. Haley
Bell Laboratories

Murray Hill, NJ 07971

William N. Joy
Computer Science Division

University of California, Berkeley
Berkeley, Ca. 94720

Abstract

We present a practical, language independent mechan-
ism for error recovery in LR parsers. The method is easy
to implement in existing parser generators. It uses only
the normal parse tables and a small amount of symbol
cost information. It is possible to use compressed parse
tables with the method, as well as other LR augmenta-
tions such as precedence and associativity declarations.
The method is efficient enough to be used in environ-
ments where space and time are at a premium.

Our method utilizes a number of previous error
recovery ideas: forward moves in the input after detec-
tion of errors to incorporate right context, recovery choice
based on weighted costs, and the use of special produc-
tions to indicate major productions in the grammar for
error recovery. The method also makes use of semantic
information in choosing between possible recovery
actions.

We have implemented the method in a production Pas-
cal translator which has been in use for instruction at a
number of universities for two years. We report here on
measurements of our system on a standard data base of
Pascal programs with errors.

1. Introduction

There have been a large number of papers in recent
years on theoretical aspects of error recovery, among
them [GR 75], [PDeR 78], and [MM 78] (which gives
other references), but noticeably few actual implementa-
tions have been reported in production use. The gap
between theory and practice may be attributable to many
factors, not the least of which is that the error recovery
mechanisms tend to be large and slow. Compiler writers
and compiler users have traditionally been more con-
cerned about the quality of the generated code and the
speed of the compilation than the quality of error diag-
nostics.

This paper discusses a technique for error recovery

I" Research supported by NSF Grant MCS74-07644-A03 and
by an IBM Graduate Fellowship to W. N. Joy

© 1 9 7 9 - A C M 0-89791-002-8 /79 /0800-0168 $00.75 see ii

168

which is practical in both space and time and which can
be implemented in existing parser generator systems and
on small machines. The method presented in this paper
represents a series of compromises between power and
practicality. Unlike some other recent studies attempting
to extend error recovery ideas to LR parsing ([DR 76],
[MM 78], [PDeR 78] for example) we have selectively
implemented those techniques which could be treated
efficiently. In gaining speed and saving space, we have
lost the capability to provide insight into certain kinds of
errors. It is thus essential that our method recover grace-
fully in the presence of errors which are, after analysis,
recognizably beyond the power of our method to correct.

The Pascal system in which our error recovery is incor-
porated [JGH 79] has been in heavy daily use for over
two years by people ranging from beginning programming
students to experienced and sophisticated programmers.
User reaction to the system has been extremely favorable.
Their reaction is substantiated by the performance of the
method on sample programs gathered from students in
programming classes and from other researchers.

2. A sample run

We begin with a simple Pascal program which has
appeared in the literature before [GR 75], and which
illustrates both the strengths and the limitations of our
method. Figure 1 is the output resulting from an
attempted translation of this incorrect program. The line
numbers in the figure are provided by the translator and
are not part of the program text.

Our translator flags syntactic errors with a line of
dashes and an arrow marking the point in the line where
the correction is made. Errors flagged with an "E" are
hard errors which could not be repaired, while errors
flagged with an " e " have been repaired. If no hard errors
occur during translation, code will be generated.

Our method uses context past the point of error in
choosing a recovery action. When an error is encoun-
tered we scan ahead, suppressing the listing. We associ-
ate with each token enough information to locate it accu-
rately in the source text for a possible error diagnostic.
After a recovery action is chosen, the implied
modification of the upcoming input is performed, and

Figure 1 -- a sample run

Berkeley Pascal - - Version 1.0 (January 18, 1978)

Sat Jan 20 19:55 1979 err.p

I program cacm(input,output);

2 label 1,2,3;

3 var a,b: array[1..5 1..10] of integer;

e T--- Inserted ","

4 i,j,k,l: integer;

5 begin

6 3: i + j > k + 1 * 4 then go 1 else k is 2;

e I--- Inserted keyword if

E T--- Malformed statement

E |--- Malformed statement

7 a 1,2 := b [3 * (i+4,j*/k]

e |--- Inserted " ["

e |--- Inserted "]"

e I--- Inserted ")"

E I--- Inserted identifier

8 if i=1 then then goto 3;

e I--- Inserted ";"

e I--- Deleted keyword then

9 2: end.

In program cacm:

E - label 1 was declared but not defined

parsing resumes over the unused lookahead remaining
from the error recovery and then the rest of the input
stream.

Recovery actions are of two kinds. The most common
changes, termed "first level recovery" , are single token
insertions, deletions and replacements, such as the inser-
tion of the token , on line 3. I f no simple, single ter-
minal, change is posmale, then a second level recovery is
attempted.

Second level recovery actions involve the detection of a
badly formed phrase, which approximates, but does not
match, a sequence of tokens derivable from a nontermi-
nal of the grammar. For example, on line 6, the replace-
ment of the identifier go by the keyword g o t o is rejected
because of the proximity of another error. The recovery
mechanism recognizes that it has a large part of a mal-
formed statement and skips over the token " 1 " ,
effectively replacing go 1 with a statement.

We discuss this example further in later sections of the
paper

3. Basic principles of the method

The key to the efficiency and quality of the method is
the restriction of the changes considered to a simple set
which contains a large percentage of common program-
ming errors. By using context, symbol costs, and seman-
tic information to limit the possibilities, we can afford to
perform a forward move over a bounded number of ter-
minals for each proposed change. t Since the context
information is implicit in the parse tables, its use occurs

naturally.

An important property of the classes of changes the
method chooses is that they are easily conveyed to the
user. Since syntax errors are often reflections of
misunderstandings of the language, it is important to
point out clearly to the user how the translator sees the
error. It is very important that all diagnostics are in terms
of the source program with the point of error clearly
marked. Single symbol changes can be presented to the
user without reference to the inner workings of the gram-
mar; second level recovery actions deal with components
of the language such as expressions, statements and
declarations with which even beginning programmers are
familiar.

Our goal is not to repair the program, but to continue
parsing and produce a maximum number of useful diag-
nostics with a min imum of noise. The diagnostics we
wish to produce are judged by their usefulness to the
user. If the system cannot repair an error with a simple
change, we prefer to say so in one message, rather than
producing a flurry of small changes which are unlikely to
be correct. In order to achieve high quality at low cost, we
do not restrict ourselves to "pure syntax" recovery but
use lexical and semantic considerations as well. It has
proven useful in some cases described subsequently to
implement certain syntactic restrictions of the source
language by semantic checks.

1" Throughout this paper we use the term "semantic" in the usu-
al compiler sense.

169

4. The method

4.1. The parser

Our method is implemented in the environment of the
compiler generator of Aho and Johnson called YACC
[Johnson 77], but can be easily incorporated in other LR
parser generators. This parser generator uses a LALR(1)
technique, although the method should work equally well
with LR and SLR generators . t

Our method allows most space saving techniques for
parse table compression to be used, but makes some sim-
ple but critical demands on the way in which information
is compressed in the parse tables. It requires that
sufficient information exist there to prevent " too many"
reductions from occurring before an error in which the
next input token will not be shiftable is detected.

Recall that a syntax error is detected in an LR parser if,
in the current state, there is no shift or reduce move indi-
cated for the current input token. In order to save space
many SLR(1) and LALR(1) table generators enumerate
lookahead symbols only to the extent necessary to resolve
parsing action conflicts. In particular, if a state has
exactly one reduction (completed rule) that reduction is
indicated for all input tokens which are not shiftable.
These "defaul t reduct ions" reduce the tables to accept-
able size, but delay error detection because reductions are
made without a legality check on the input token. In our
initial work to improve the error recovery in an early ver-
sion of the Pascal system, we discovered that these addi-
tional reductions severely hampered the recovery.

Consider the following fragmentary input:

a :=b?c] ;

We have indicated with a ' ? ' here that an error exists
between the identifiers b and e. The crucial point to
observe is that " a :-- b " may well correspond to a com-
plete s tatement in our language grammar. If our parser
generator compresses lookahead to the extent that it
allows " a :-- b " to reduce to a s tatement, then we will
have no chance to repair this s tatement by the simple and
obvious change, inserting a ' ['.*

Eliminating all default reductions would give unaccept-
ably large tables. Instead, we replace default reductions
by the actual lookahead symbols only in specially desig-
nated states. If those contexts are chosen appropriately,
the selective expansion of lookaheads prevents too many
reductions from occurring, while achieving good space
compression.

We have borrowed from YACC a notion of a special
error token which is recognized by both the table genera-
tor and the parser. As in YACC, our grammars can con-
tain productions, called "e r ror product ions" which con-
tain the error token as one of the tokens in the rule. The

t We will assume that the reader is familiar with LR and LALR
parsing. Readers unfamiliar with LALR parser table construction
are referred to [AU 77] for a excellent and thorough presenta-
tion.
* We do not consider undoing reductions to be a feasible ap-
proach in the context of our error recovery.

table generator constructs the table in the usual way,
except that it enumerates all lookaheads in states which
have a shift action on the error token.

When the parser detects an error, the error token is
inserted before the actual input token. The parser
reduces the stack until it reaches a state in which it must
inspect the lookahead symbol. It then " s e e s " the error
token and invokes the error recovery mechanism.

4.2. The grammar and the error productions

Our grammar was adapted from the one given in the
Pascal User Manual and Report [JW 75] by removing
ambiguities, using a simplified expression grammar aug-
mented by precedence and associativity declarations, and
making the changes described in section 4.4. In order for
selective lookahead expansion to work well, and to pro-
vide hooks for the second level recovery mechanism
(described below), the major nonterminals of the gram-
mar generate error productions. Those port ions of the
grammar involving the error productions are given in Fig-
ure 2.

As the reader can see from Figure 2, the error produc-
tions cause lookahead expansion following recognition of
the program token, s tatements, expressions, identifiers
which begin s tatements or expressions, and (perhaps par-
tial) lists of constant definitions, type definitions, variable
declarations, declaration sections, record fields, and
record variant fields. These are the major units in Pascal,
and it is important that the error recovery mechanism
take hold to deal with errors following them.

The error productions, which are critical in keeping the
parse tables small while preventing too many reductions
from taking place, also guide the second level error
recovery. This use will be discussed subsequently.

4.3. First level recovery algori thm

We next describe the process of choosing a first level
recovery action at the point of error. We have already
seen how, in the presence of an error, default reductions
can occur. The default reductions are analogous to the
backward move of Graham and Rhodes and serve to con-
dense the left-context informat ion. t The error produc-
tions in the grammar control how much left context con-
densation occurs.*

After condensing the left context information, we form
a set of feasible first level corrections without a prelim-
inary forward move. This strategy is unlike the Graham
and Rhodes approach. Given the apparently large cost in
space and time of LR forward moves [DR 76],
[Modry 76] we chose to at tempt to find a small but rich
set of changes and to run a forward move on each. While
this strategy is potentially slower than a single preliminary
forward move, it has the advantage that we can use

t Our method is based on the work of Graham and Rhodes
[GR 75]. We use their terminology in the remainder of this pa-
ler.
* Note that control over the amount of left context condensation
is not possible in the Graham-Rhodes method.

170

Figure 2 - error productions

programHeader :: = p r o g r a m id (idList) ; I p r o g r a m e r r o r

declarations :: = declarations decl I decl I declarations e r r o r

decl ::= labelDecl I constDecl I typeDecl I varDecl

constDecl ::= eons t id = constant ;
I constDecl id = constant ;
I const error

I constDecl error

typeDecl : : = t y p e id = type ;
t typeDecl id = type ;
I type error

[typeDecl error

varDecl :: = var idList = var ;
I varDecl idList = var ;
I var error

I varDecl error

recordFieldList :: = fixedPart variantPart

f ixedPart::= f ield I f ixedPart ; field I f ixedPart e r r o r

f ield ::= h I idList : type

variantPart :: = h
I ease id of variantList
[ease id : typeld of variantList

variantList :: = variant variantList ; variant I variantList e r r o r
variant ::= k

I constList : f ieldList)
I constList :)

caseS tL ist :: = caseL istE leme nt
[caseStList ; caseListElement
I e r r o r
I caseStList error

statement::= . . . I i d e r r o r I e r r o r

expression : : = . . . I i d e r r o r I e r r o r

semantic information to aid in the recovery selection pro-
cess without worrying about reductions occurring out of
order. In many cases, such as in line 7 of Figure 1,
semantic information is as good as right context in prun-
ing the set of possible changes. We will return to this
example and the issue of semantic information in the
next section.

The first level changes considered by the error recovery
routine are single token changes using the shi f t tokens in
the current state and the input token that caused the error
to be detected. The possible changes are deletion of the
input token, insertion of each legal shift entry before the
input token, and replacement of the input token by each
legal shift entry.

Consider the first error in the example in Figure 1.
The parser is in state 275 when the error is detected.
This state has the form:

s t ruc tType : := a r r a y [s imp leT ypeL i s t •] o f type
s i m p l e T y p e L i s t : : = s i m p l e T y p e L i s t , • s impleType

shift to state 305
] shift to state 304
default declare error

In our example, the input "1. .5" was reduced to "simple-
T y p e " although a full LR parser would have declared
error because the second input " 1 " was not a legal sym-
bol following the "5" .

In order to try to use the symbols " , " and "] " to per-
form a repair, we first scan ahead a bounded number of
tokens (five tokens in our production translator used for
this example) to prepare for the forward moves. Each
possible change (except, as explained subsequently, those
that can be immediately eliminated) is tried by running
the translator forward over this input stream until we
either run out of lookahead tokens, encounter another
syntax error, or perform a reduction which semantically
indicates the presence of another error.'l" During this for-
ward move we are running only a subset of the semantics
of the compiler, avoiding any permanent changes to its
data structures since the parsing is over tentative forms of
the input.

In addition to changes based on the input token that
signalled the error, if the last action before the error
detection is a shift, in which case the previous input sym-
bol has not yet been reduced, the recovery routine backs
up the input one token and considers the same kind of
repairs. By limiting the backup to input tokens, we avoid
the need to undo semantic actions.

In choosing the best first level repair we have adopted
the basic principles of the Graham and Rhodes method
and assigned costs to each terminal symbol. The basic
cost of a repair is the sum of the costs of the tokens
involved.

To incorporate information from the forward move, we
multiply each basic cost by a factor to indicate lack of pro-
gress into the forward context. If the repair allows us to
consume all of the forward context then this factor is
unity. Consuming less of the input gives higher multipli-
cative factors. Thus if the basic cost of a repair prior to
the forward move is greater than the total cost of one of
the changes which we have already found, then the repair
is not even potentially "bet ter" . This observation allows
us to eliminate many potential repairs without a forward
move.

If the symbol being replaced, deleted or inserted, such
as a number or an identifier, has a semantic attribute,
then the repair is assigned higher cost. As in Graham
and Rhodes' work, the replacement of certain keywords
by identifiers is done at a reduced cost. We also cut off
the forward move prematurely, and assign a higher cost,
if a reduction prompted by the change yields another
error.

If none of the repairs considered so far survives the

t Thus in inserting the keyword i f in our example, the method
did not have enough lookahead to see the keyword then . The
presence of a legal expression here indicates that either an i f or
a whi le is missing; the recovery method chooses the former
without complete information.

171

forward move with sufficiently low cost, and if the state in
which the error recovery mechanism is invoked has only
one shift action, then the shiftable token is inserted.
Since insertion of that token was previously considered to
be unsatisfactory, the error recovery mechanism is usually
invoked again after a small number of parsing steps. The
second time, a "un ique token" insertion is not con-
s idered. t

This aspect of the recovery mechanism has two advan-
tages. It suggests to the user that that token seems to be
appropriate in the particular context, and it allows the
recovery mechanism to insert more than one token in
certain cases.

4.4. Semantic considerations

The method includes the use of semantic information
in the error detection and recovery mechanism. Before a
given reduction occurs, the parser action routines can
check that certain semantic conditions are satisfied. For
instance, our grammar has no typed identifiers as lexical
tokens. Typically, an action routine for a reduction of an
identifier will determine its declared type and check that
an identifier of that type can precede the next input
token. If the semantic conditions are not satisfied, the
syntax error recovery takes hold. The recovery action of
changing the semantics to satisfy the condition, for
instance changing an identifier type, is assigned a cost and
a forward move is attempted. The resulting recovery cost
is then compared with the various other changes
described in the previous section.

As an example, if a function identifier were followed by
" [" , the array subscript bracket, rather than by " (" , both
a type error and a change from " [" to " (" would be con-
sidered.

These semantic checks are also used during the forward
move, thereby eliminating changes that are syntactically
correct but are meaningless. Returning to line 7 of Figure
1, the fact that " a " is an array causes the insertion of " ["
rather than " (" even if the subscript expressions are
more than five tokens long.

Semantic checks can also be used in place of grammar
restrictions, when the language restrictions described by
the grammar cause many programming errors from which
it is hard to recover using local information. For exam-
ple, in Pascal, the declarations of labels, constants, types
and variables must be in sections occurring in that order,
each section headed by the keyword l a b e l , eons t ,
or v a t respectively. We let the grammar generate any
number of these sections in any order, and impose the
restrictions semantically. Consequently, errors s temming
from extra sections or sections out of order are always
handled properly. We also allow type declarations, rather
than just type identifiers, in the grammar for parameter
lists and the results of functions, again catching such
errors semantically.*

Care is needed in introducing such syntactic extensions
to make sure that the proper restrictions are always
imposed by the action routines. The more general syntax
may also cause the recovery mechanism to consider
changes which are outside the language syntax. This could
lead to misleading diagnostics unless the extra produc-
tions are carefully chosen and the semantic checks are
made during the error recovery process.

4.5. Paired errors

One of the problems in this sort of error recovery is
knowing whether a second error encountered during the
forward move is an indication that our choice of repair
was poor and should be rejected, or is just another error
in the input stream. This problem arises on line 6 of Fig-
ure 1. The replacement of the identifier go by the key-
word g o t o is considered here, but is rejected because
there is another error (" i s " rather than " : - - ") within the
forward move. The error recovery is unsure of the
change to g o t o here because of this other error and
chooses to make a safer second level change. If the
second error were not present, the error recovery would
be more confident of its repair of the first error and
would fix it successfully.

It would be possible to take into account reductions in
the forward move rather than just distance into the for-
ward context in the evaluation of costs. With this stra-
tegy, the change of " g o " to goto allows the completion
of a s ta tement and partial progress into the next state-
ment. It is thus a better repair than our current weighting
scheme suggests.

4.6. Second level recovery

If no single terminal (first level) repair is found satis-
factory; that is, if the cost of each change is higher than a
threshold value, then the error recovery retreats to a set
of second level changes. In this case the stack is popped
to a state which has a shift on error and the parser shifts
over the error token. The semantic actions for the error
productions call a routine which advances the input to a
symbol which is a legal shift in that state or a symbol
which is one of a set of " b e a c o n " symbols in the
language. This part of the error recovery is similar to that
of the basic YACC.

Second level recovery actions are reminiscent of "panic
m o d e " recovery but differ in that the skipping of subse-
quent input is terminated either by context information
(the shift symbols) or by context independent "beacons" .
Panic mode normally has only a set of "beacons".~:

As an example, if an error is encountered in an expres-
sion following an i f , the parser will skip ahead to, but
not past, the keyword t h e n while "panic m o d e " recovery
would most likely skip to " ; " or the keyword end.

t Care is needed to avoid looping in this case. It sumces to insist
on shifting over a real input symbol for each unique input symbol
inserted. For all other changes, the method requires that a
recovery action result in a shift over one true input token, so no
looping is possible.

* Not only do such changes facilitate the error recovery, but they
also tend to simplify the grammar.

Earlier work by [James 72] attempted to use shift information
for a refined panic mode, but had no meaningful strategy for
popping the parse stack.

172

Second level recovery actions are actually very similar to
the recovery mechanism in Wir th ' s recursive descent
,recovery scheme [Wi 76]. Like. Wirth, we also have a set
of major section keywords which are never skipped.

In Pascal, the main program and each procedure or
function consists of a declaration section and a statement
section. An important cause of poor error recovery in
languages of this form is a mistaken switch from one such
section to the other. We use the beacons to handle that
situation.

The second level recovery routine records in which sec-
tion the error production which signals the input advance
is used. If the second level recovery occurs in the
declaration section and the keyword fo r , r e p e a t , while,
goto , or i f is read, the keyword b e g i n is inserted before
the input keyword. If the second level recovery occurs in
the statement section and the keyword l a b e l , type ,
eons t , or v a t is read, the stack is popped until a state is
reached in which that keyword is a legal shift token. In
either case, an appropriate message is generated.

The enumerat ion of lookaheads in states with shifts o r
error guarantees that a second level recovery of a major
nonterminal which can be derived from another major
nonterminal will cause another error to be detected if the
input symbol (after the second level recovery action) can-
not follow in the larger context. For example, if error
causes a second level recovery to expression default reduc-
tions stop if a well formed expression will not complete a
statement. If in fact an error in an expression yields
another, second level, statement recovery without shifting
any further input, then it is likely that the two errors are,
in fact, one. We thus suppress further diagnostics after a
second level recovery until some input is successfully
shifted.

4.7. The lexical analyzer and input routines

The lexical analyzer must handle lexical errors grace-
fully, passing enough information on to the syntactic
recovery mechanism so that it can decide what to do.
The recovery mechanism needs to locate the position in
the source program at which a token appeared so as to be
able to print a meaningful diagnostic. Fur thermore, the
input routines must have the capability for suppressing
the listing during a forward move so that the listing can
later be produced after any error message printed for the
current line.

Illegal characters encountered during lexical analysis are
passed to the syntax analyzer, except that a sequence of
occurrences of the same illegal character is replaced by a
single such character, The iexical analyzer generates no
error message, since the syntax analyzer will do so. The
normal error recovery mechanism is then used, allowing
possible replacement or deletion of the illegal character as
appropriate.

Our lexical analyzer recognizes forms of the language
syntax used at other installations and in other character
sets. It also knows that string and comment delimiters
must be paired and that several different characters may
be used to delimit strings and character constants: nor-
mally, # for portability to other systems, and " and
incorrectly.

Buffering input during a read ahead to gather context
for forward moves is a nuisance but a necessity. Random
access file i /o allowing only pointers to skipped lines to be
saved makes listing suppression simple. If such access is
not available, the text of lines can be spooled in core or
to the disk.

4.8. Error messages.

The format of error messages produced by recovery
systems has received too little attention. It is important
that each error point be clearly marked, and very impor-
tant that the messages produced be concise. Our method
produces a single short message for each error. These
messages are not wordy; they state simply the recovery
action taken, and the symbol involved. It is important
that users do not have to read through several lines of
diagnostics to get the essential information being
presented by the recovery method. This is especially true
since most users of our system receive error messages at
a time sharing terminal with a small (24 line) screen.

In many compilers, errors in declaring or defining an
identifier in a program cause a plethora of diagnostic mes-
sages about identifier use, many of which stem from the
same error and some of which may be misleading. We
attempt to alleviate this problem in two ways.

When a misuse of an identifier such as inconsistent
type or lack of declaration is detected by the semantic
routines, a message is printed and the error and line
number are recorded internally. Each time the same
problem recurs, the line number of its occurrence is also
recorded, but no additional i n t e r - l i n e message is gen-
erated. At the end of the program, procedure, or func-
tion, these errors are summarized.

If the second level recovery mechanism advances over
an identifier, all subsequent warnings about identifiers,
such as lack of initialization or lack of use, are
suppressed.'t"

5. Cost of the implementation

5.1. Size of the implementation

Our grammar for Pascal consists of 184 rules, 16 of
which are error productions. There are 69 terminals and
61 nonterminals. The resulting parser has 337 states of
which 24 are states with shifts on error. The parse tables
occupy 6000 bytes on a PpP-11 . Of the 1700 entries in
the parse action table, only 214 are lookaheads in states
which have shifts on error, and some of these lookaheads
would be present even if the error productions were not.

The total cost in space of the expansion of lookaheads
in shifts on the e r r o r token is less that ten percent of
the total table size. The version of YACC we worked
with used a list representation of the LR parse tables. A
newer version of YACC uses a matrix representation, and
with this improved representation the increase is less than
five percent.

t It would suffice to suppress warnings for the skipped identifiers
only.

173

The recovery code itself requires little data beyond the
basic parse tables. The additional fixed data required is
the information as to symbol costs, which in any case is
no more than a few hundred bytes, and the small tables
which guide the second level recovery. The total size of
our syntax analysis and recovery routines, for a full Pascal
translator with a number of bells and whistles, is 17.5K
bytes on a PDP-11 . This breaks down roughly as fol-
lows:

Lexical analyzer 650 bytes 9%
Parser 800 bytes 5%
Input-Output 1700 bytes 10%
Error recovery 4800 bytes 27%
Parse tables 6000 bytes 34%
Action hooks 2500 bytes 15%

The input/output is an interface which provides spooling
of input during the forward move, including file switching
due to the placement of source code in multiple, possibly
nested files. The action hooks are the semantic routine
calls embedded in the grammar itself.

Without any error recovery, roughly 10K bytes of pro-
gram and data would remain. In our environment, most
of the additional size of the compiler is shared among
users when multiple translations are taking place simul-
taneously, and it is thus less significant. The total size of
the translator is roughly 70K bytes with 55K program
shared among all users and 15K bytes unshared.

The method uses no additional space dynamically, and
does not require copying of the parse stack. The forward
move parser knows how to run on a "split-stack" so as to
avoid the extra time and space involved in copying the
stack.

5,2. Speed of the implementation

The translation time of programs without errors is not
degraded by the method if a matrix form of the parse
tables is used. In our list form we at first experienced a
15% reduction in speed due to the enumeration of looka-
heads, and the subsequent slower linear searches of the
list form parse tables in the expression chain. This 15%
was recovered by more careful coding of the search loop
in the parser.

The execution time of the error recovery itself is
acceptably small. On one of the example programs from
Rhodes' dissertation [Rhodes 73], a program of around
100 lines with almost 100 errors, the method used
approximately 3 seconds of user processor time. A pro-
gram of equivalent length with no errors would be pro-
cessed in approximately 1 second of processor time.
Since the error messages generated by the compiler are
kept on secondary storage and must be retrieved to print
each error message, a large percentage of this additional
time was used just to retrieve the 100 or more error mes-
sages printed by the translator. The efficiency of the error
recovery method has never proved to be a problem on
our small systems running 20 to 30 simultaneous Pascal
u s e r s .

6. Performance of the method

6.1. Quality of the recovery

We have gathered a large number of student programs
over the course of an earlier quarter of instruction. The
programs suggest that the method does indeed do a good
job of correcting a large portion of programmer mistakes.
The kind of errors which it does not repair often involve
a deeper misunderstanding of the language than could be
repaired by any known method with efficiency acceptable
in our environment.

The error recovery also tends not to flurry, rarely pro-
ducing a large number of diagnostics for a single syntax
error. The reasons are a combination of the context
checks for first-level repairs, the cost criteria, the sum-
marized information, and the suppression of consecutive
second level diagnostics.

6.2. A sample data set

We have obtained from Ripley and Druseikis [RD 78] a
database of errors from erroneous student Pascal pro-
grams. There are 126 fragmentary programs in the sam-
ple set, and each program fragment represents a
"unique" error in the original sample (which was much
larger). The constitution of the larger sample is indicated
by a weight for each fragment reflecting the frequency of
its occurrence in the sample as a whole.

The samples were prepared for systems which do only
syntactic analysis. The errors which the samples are
intended to test are indicated, but declarations for
identifiers used in the fragments are almost always omit-
ted. Before running the samples we added declarations
for the variables. This change allows our method to use
semantic information which was present in the original
programs, and treats the kinds of errors which were
present there.

6.3. Evaluation of our method

We have made a preliminary evaluation of the perfor-
mance of our algorithm on this data set using the criteria
of the original paper [RD 78]. The paper classified error
messages from the 6000-3.4 Pascal system as being either
"accurate", "incorrect" or "poor". Messages were
deemed to be poor if they were "vague, giving no indica-
tion of what was expected"[RD 78].

Our translator accurately diagnosed well over 80 percent
of the errors in the weighted sample set, while Pascal
6000--3.4 accurately diagnosed roughly 50 percent of the
errors. Many of the errors for which we give accurate
repairs and Pascal 6000-3.4 does not involve " ; " errors
and incorrect keywords. The keyword errors include
misspellings, omissions, and extra keywords. We also
diagnose extra or out-of-order declaration or definition
sections properly whereas the 6000-3.4 compiler does not.

Every example on which we rated our recovery as poor
was rated poor by Ripley and Druseikis with one excep-
tion. In that example, the program contained

174

if y[n; = y[m] then .

Ripley and Druseikis rated the Pascal 6000-3.4 perfor-
mance accurate because the message " '] ' expected " was
generated. However since the next three messages at the
same point in the program were "illegal type of expres-
sion", " t hen expected", and "illegal symbol", we regard
the diagnosis in this example as poor.

The same sample data set has been used by Penneilo
and DeRemer [PDeR 78] in evaluating their LR recovery
algorithm and by Pai and Kieburtz [PK 79] in assessing
their LL(1) strategy. However, they have used different
evaluation criteria. We are in the process of evaluating
our results using their criteria; the performance of our
system again appears t obe very good.

7. Conclusions and suggestions for further work

We have described an LR error recovery system
embedded in a heavily used translator which provides
high quality recovery with reasonable cost in space and
time. The underlying mechanism is readily incorporated
in parser constructors and the additional information is
easily supplied by the implementer. If space is even more
limited, there are natural places to prune the system.
(For example, one could restrict the forward move to the
number of tokens on the input line, provided there were
at least one, and provided the cost formula were adjusted
appropriately.)

The approach here is fundamentally limited. The limi-
tation to single terminal repairs, which has made the
method so efficient, may be difficult to remove without
using much more space and time. This method does,
however, provide a benchmark for more ambitious
schemes. A method which proposes to use much more
t ime than ours must provide substantially better error
recovery to justify its cost.

There is much hope for automation of this method.
Work is in progress to put this method in place within
YACC so that it can easily be used. We are planning to
continue work on error recovery, and are especially
encouraged by the use of semantic information in this
method. We intend to give more and careful study to the
use of semantics in error recovery.

Acknowledgements

We are very grateful to Ken Thompson, who wrote the
first version of the Berkeley Pascal System and provided a
solid foundation on which to build. We thank David Rip-
ley, Fred Druseikis, Ajit Pai, Dick Kieburtz, Tom Pen-
hello, and Frank DeRemer, who shared the listings of
their test results with us, so that we could attempt to
make meaningful comparisons. Our thanks also go to
Doug Mcllroy, who made very helpful comments on the
manuscript that significantly improved the presentation.

References
[AU 77]

Aho, A.V. and Ullman, J.D. Principles of Compiler
Design. Addison Wesley, 1977.

[DR 761
Druseikis, F.C. and Ripley, G.D. Error Recovery
for Simple LR(k) Parsers. Proceedings of the
Annual Conference of the ACMOctober, 1976.

[GR 751
Graham, S.L., and Rhodes, S.P. Practical Syntac-
tic Error Recovery. Comm. ACM 16, 11 (Nov.
1975), 639-650.

[James 72]
James, L. R. A Syntax Directed Error Recovery
Method. M. S. Thesis, Tech. Report CSRG-13.

Compu te r Systems Research Group, University of
Toronto, May 1972.

[JW 75]
Jensen, K., and Wirth, N. Pascal User Manual
andReport. Springer-Verlag, 1974.

[Johnson 77]
Johnson, S.C. YACC -- Yet Another Compiler
Compiler. Bell Laboratories, Murray Hill, 1977.

[JGH 79]
Joy, W.N., Graham, S.L., and Haley, C.B. Berke-
ley Pascal User's Manual Version 1.1. Computer
Science Division, University of California at
Berkeley, April 1979.

[MM 78]
Mickunas, M.D., and Modry, J.A. Automatic
Error Recovery for LR Parsers. Comm. ACM 21,
6 (June 1978), 459-465.

[Modry 76]
Modry, J.A. Syntactic Error Recovery for LR
Parsers. M.S. Thesis, Univ. Illinois, 1976.

[PDeR 781
Pennello, T.J. and DeRemer, F.A. A Forward
Move for LR Error Recovery. Conf. RecordACM
Symposium on Principles of Prog. Lang., January,
1978.

[PK 79]
Pai,A. and Kieburtz, R.B. Global Context
Recovery: a New Strategy. ACM Sigplan Sympo-
sium on Compiler Construction, August, 1979.

[Rhodes 73]
Rhodes, S. P. Practical Syntactic Error Recovery
for Programming Languages. Ph. D. Dissertation.
Tech. Report #15. Computer Science Division,
University of California, Berkeley. June, 1973.

[RD 781
Ripley, G. David and Druseikis, Frederick C. A
Statistical Analysis of Syntax Errors. Journal of
Computer Languages,3, 1978.

[Wi 76]
Wirth, N. Algorithms + Data Structures = Pro-
grams. Prentice-Hall, 1976.

175

