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Abstract 

We present a practical, language independent mechan- 
ism for error recovery in LR parsers. The method is easy 
to implement in existing parser generators. It uses only 
the normal parse tables and a small amount of symbol 
cost information. It is possible to use compressed parse 
tables with the method, as well as other LR augmenta- 
tions such as precedence and associativity declarations. 
The method is efficient enough to be used in environ- 
ments where space and time are at a premium. 

Our method utilizes a number of previous error 
recovery ideas: forward moves in the input after detec- 
tion of errors to incorporate right context, recovery choice 
based on weighted costs, and the use of special produc- 
tions to indicate major productions in the grammar for 
error recovery. The method also makes use of semantic 
information in choosing between possible recovery 
actions. 

We have implemented the method in a production Pas- 
cal translator which has been in use for instruction at a 
number of universities for two years. We report here on 
measurements of our system on a standard data base of 
Pascal programs with errors. 

1. Introduction 

There have been a large number of papers in recent 
years on theoretical aspects of error recovery, among 
them [GR 75], [PDeR 78], and [MM 78] (which gives 
other references), but noticeably few actual implementa- 
tions have been reported in production use. The gap 
between theory and practice may be attributable to many 
factors, not the least of which is that the error recovery 
mechanisms tend to be large and slow. Compiler writers 
and compiler users have traditionally been more con- 
cerned about the quality of the generated code and the 
speed of the compilation than the quality of error diag- 
nostics. 

This paper discusses a technique for error recovery 
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which is practical in both space and time and which can 
be implemented in existing parser generator systems and 
on small machines. The method presented in this paper 
represents a series of compromises between power and 
practicality. Unlike some other recent studies attempting 
to extend error recovery ideas to LR parsing ([DR 76], 
[MM 78], [PDeR 78] for example) we have selectively 
implemented those techniques which could be treated 
efficiently. In gaining speed and saving space, we have 
lost the capability to provide insight into certain kinds of 
errors. It is thus essential that our method recover grace- 
fully in the presence of errors which are, after analysis, 
recognizably beyond the power of our method to correct. 

The Pascal system in which our error recovery is incor- 
porated [JGH 79] has been in heavy daily use for over 
two years by people ranging from beginning programming 
students to experienced and sophisticated programmers. 
User reaction to the system has been extremely favorable. 
Their reaction is substantiated by the performance of the 
method on sample programs gathered from students in 
programming classes and from other researchers. 

2. A sample run 

We begin with a simple Pascal program which has 
appeared in the literature before [GR 75], and which 
illustrates both the strengths and the limitations of our 
method. Figure 1 is the output resulting from an 
attempted translation of this incorrect program. The line 
numbers in the figure are provided by the translator and 
are not part of the program text. 

Our translator flags syntactic errors with a line of 
dashes and an arrow marking the point in the line where 
the correction is made. Errors flagged with an "E"  are 
hard errors which could not be repaired, while errors 
flagged with an " e "  have been repaired. If no hard errors 
occur during translation, code will be generated. 

Our method uses context past the point of error in 
choosing a recovery action. When an error is encoun- 
tered we scan ahead, suppressing the listing. We associ- 
ate with each token enough information to locate it accu- 
rately in the source text for a possible error diagnostic. 
After a recovery action is chosen, the implied 
modification of the upcoming input is performed, and 



Figure 1 -- a sample run 

Berkeley Pascal - -  Version 1.0 (January 18, 1978) 

Sat Jan 20 19:55 1979 err.p 

I program cacm(input,output); 

2 label 1,2,3; 

3 var a,b: array[1..5 1..10] of integer; 

e T--- Inserted "," 

4 i,j,k,l: integer; 

5 begin 

6 3: i + j > k + 1 * 4 then go 1 else k is 2; 

e I--- Inserted keyword if 

E ................ T--- Malformed statement 

E |--- Malformed statement 

7 a 1,2 := b [ 3 * ( i+4,j*/k] 

e ............ |--- Inserted " [" 

e |--- Inserted "]" 

e I--- Inserted ")" 

E ............ I--- Inserted identifier 

8 if i=1 then then goto 3; 

e .......... I--- Inserted ";" 

e I--- Deleted keyword then 

9 2: end. 

In program cacm: 

E - label 1 was declared but not defined 

parsing resumes over the unused lookahead remaining 
from the error recovery and then the rest of  the input 
stream. 

Recovery actions are of  two kinds. The most common 
changes, termed "first  level recovery" ,  are single token 
insertions, deletions and replacements,  such as the inser- 
tion of  the token .. . . ,  on line 3. I f  no simple, single ter- 
minal, change is posmale, then a second level recovery is 
attempted. 

Second level recovery actions involve the detection of  a 
badly formed phrase, which approximates,  but does not 
match, a sequence of  tokens derivable from a nontermi-  
nal of  the grammar. For  example,  on line 6, the replace- 
ment  of  the identifier go by the keyword g o t o  is rejected 
because of  the proximity of  another  error. The recovery 
mechanism recognizes that it has a large part of  a mal- 
formed statement and skips over the token " 1 " ,  
effectively replacing go 1 with a statement.  

We discuss this example further in later sections of  the 
paper 

3. Basic principles of the method 

The key to the efficiency and quality of  the method is 
the restriction of  the changes considered to a simple set 
which contains a large percentage of  common program- 
ming errors. By using context,  symbol costs, and seman- 
tic information to limit the possibilities, we can afford to 
perform a forward move over a bounded number  of  ter- 
minals for each proposed change. t  Since the context 
information is implicit in the parse tables, its use occurs 

naturally. 

An important property of  the classes of  changes the 
method chooses is that they are easily conveyed to the 
user. Since syntax errors are often reflections of  
misunderstandings of  the language, it is important to 
point out clearly to the user how the translator sees the 
error. It is very important that all diagnostics are in terms 
of  the source program with the point of  error clearly 
marked. Single symbol changes can be presented to the 
user without reference to the inner workings of the gram- 
mar; second level recovery actions deal with components  
of  the language such as expressions, statements and 
declarations with which even beginning programmers are 
familiar. 

Our goal is not to repair the program, but to continue 
parsing and produce a maximum number  of useful diag- 
nostics with a min imum of  noise. The diagnostics we 
wish to produce are judged by their usefulness to the 
user. If the system cannot repair an error with a simple 
change, we prefer to say so in one message, rather than 
producing a flurry of  small changes which are unlikely to 
be correct. In order to achieve high quality at low cost, we 
do not restrict ourselves to "pure  syntax"  recovery but 
use lexical and semantic considerations as well. It has 
proven useful in some cases described subsequently to 
implement certain syntactic restrictions of the source 
language by semantic checks. 

1" Throughout this paper we use the term "semantic" in the usu- 
al compiler sense. 
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4. The method 

4.1. The parser 

Our method is implemented in the environment  of  the 
compiler generator of  Aho and Johnson called YACC 
[Johnson 77], but can be easily incorporated in other LR 
parser generators. This parser generator uses a LALR(1)  
technique, although the method should work equally well 
with LR and SLR generators . t  

Our method allows most space saving techniques for 
parse table compression to be used, but makes some sim- 
ple but critical demands  on the way in which information 
is compressed in the parse tables. It requires that 
sufficient information exist there to prevent  " too  many"  
reductions from occurring before an error in which the 
next  input token will not be shiftable is detected. 

Recall that a syntax error is detected in an LR parser if, 
in the current state, there is no shift or reduce move indi- 
cated for the current input token. In order to save space 
many SLR(1) and LALR(1)  table generators enumerate  
lookahead symbols only to the extent  necessary to resolve 
parsing action conflicts. In particular, if a state has 
exactly one reduction (completed rule) that reduction is 
indicated for all input tokens which are not shiftable. 
These "defaul t  reduct ions"  reduce the tables to accept- 
able size, but delay error detection because reductions are 
made without a legality check on the input token. In our 
initial work to improve the error recovery in an early ver- 
sion of the Pascal system, we discovered that these addi- 
tional reductions severely hampered  the recovery. 

Consider  the following fragmentary input: 

a :=b?c] ; 

We have indicated with a ' ? '  here that an error exists 
between the identifiers b and e. The crucial point to 
observe is that " a  :-- b "  may well correspond to a com- 
plete s tatement  in our language grammar.  If  our parser 
generator compresses lookahead to the extent  that it 
allows " a  :-- b "  to reduce to a s tatement,  then we will 
have no chance to repair this s tatement  by the simple and 
obvious change, inserting a ' ['.* 

Eliminating all default reductions would give unaccept- 
ably large tables. Instead, we replace default reductions 
by the actual lookahead symbols only in specially desig- 
nated states. If  those contexts are chosen appropriately, 
the selective expansion of  lookaheads prevents too many 
reductions from occurring, while achieving good space 
compression. 

We have borrowed from YACC a notion of  a special 
error  token which is recognized by both the table genera- 
tor and the parser. As in YACC, our grammars can con- 
tain productions, called "e r ror  product ions"  which con- 
tain the error token as one of the tokens in the rule. The 

t We will assume that the reader is familiar with LR and LALR 
parsing. Readers unfamiliar with LALR parser table construction 
are referred to [AU 77] for a excellent and thorough presenta- 
tion. 
* We do not consider undoing reductions to be a feasible ap- 
proach in the context of our error recovery. 

table generator constructs the table in the usual way, 
except that it enumerates  all lookaheads in states which 
have a shift action on the error  token. 

When  the parser detects an error,  the error  token is 
inserted before the actual input token. The parser 
reduces the stack until it reaches a state in which it must  
inspect the lookahead symbol. It then " s e e s "  the error  
token and invokes the error recovery mechanism. 

4.2. The  grammar and the error  productions 

Our grammar was adapted from the one given in the 
Pascal User Manual  and Report  [JW 75] by removing 
ambiguities, using a simplified expression grammar aug- 
mented by precedence and associativity declarations, and 
making the changes described in section 4.4. In order for 
selective lookahead expansion to work well, and to pro- 
vide hooks for the second level recovery mechanism 
(described below), the major nonterminals  of  the gram- 
mar generate error productions. Those port ions of  the 
grammar involving the error productions are given in Fig- 
ure 2. 

As the reader can see from Figure 2, the error produc- 
tions cause lookahead expansion following recognition of  
the program token,  s tatements,  expressions,  identifiers 
which begin s tatements  or expressions,  and (perhaps par- 
tial) lists of  constant definitions, type definitions, variable 
declarations, declaration sections, record fields, and 
record variant fields. These are the major units in Pascal, 
and it is important  that the error recovery mechanism 
take hold to deal with errors following them. 

The error productions,  which are critical in keeping the 
parse tables small while preventing too many reductions 
from taking place, also guide the second level error  
recovery. This use will be discussed subsequently. 

4.3. First  level recovery algori thm 

We next describe the process of  choosing a first level 
recovery action at the point of  error. We have already 
seen how, in the presence of  an error, default reductions 
can occur. The default  reductions are analogous to the 
backward move of  Graham and Rhodes  and serve to con- 
dense the left-context informat ion. t  The error produc- 
tions in the grammar control how much left context con- 
densation occurs.* 

After  condensing the left context  information,  we form 
a set of  feasible first level corrections without a prelim- 
inary forward move.  This strategy is unlike the Graham 
and Rhodes  approach. Given  the apparently large cost in 
space and time of  LR forward moves [DR 76], 
[Modry 76] we chose to at tempt to find a small but rich 
set of  changes and to run a forward move on each. While 
this strategy is potentially slower than a single preliminary 
forward move,  it has the advantage that we can use 

t Our method is based on the work of Graham and Rhodes 
[GR 75]. We use their terminology in the remainder of this pa- 
ler.  
* Note that control over the amount of left context condensation 
is not possible in the Graham-Rhodes method. 
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Figure 2 - error productions 

programHeader :: = p r o g r a m  id ( idList ) ; I p r o g r a m  e r r o r  

declarations :: = declarations decl I decl I declarations e r r o r  

decl ::= labelDecl I constDecl I typeDecl I varDecl 

constDecl ::= eons t  id = constant ; 
I constDecl id = constant ; 
I const error 

I constDecl error 

typeDecl : : =  t y p e  id = type ; 
t typeDecl id = type ; 
I type error 

[ typeDecl error 

varDecl :: = var  idList = var ; 
I varDecl idList = var ; 
I var error 

I varDecl error 

recordFieldList :: = fixedPart variantPart 

f ixedPart::= f ield I f ixedPart ; field I f ixedPart e r r o r  

f ield ::= h I idList : type 

variantPart :: = h 
I ease id of variantList 
[ ease id : typeld of variantList 

variantList :: = variant variantList ; variant I variantList e r r o r  
variant ::= k 

I constList : f ieldList  ) 
I constList : ) 

caseS tL ist :: = caseL istE leme nt 
[ caseStList ; caseListElement 
I e r r o r  
I caseStList error 

statement::= . . .  I i d e r r o r  I e r r o r  

expression : : =  . . .  I i d e r r o r  I e r r o r  

semantic information to aid in the recovery selection pro- 
cess without worrying about reductions occurring out of 
order. In many cases, such as in line 7 of Figure 1, 
semantic information is as good as right context in prun- 
ing the set of possible changes. We will return to this 
example and the issue of semantic information in the 
next section. 

The first level changes considered by the error recovery 
routine are single token changes using the shi f t  tokens in 
the current state and the input token that caused the error 
to be detected. The possible changes are deletion of the 
input token, insertion of each legal shift entry before the 
input token, and replacement of the input token by each 
legal shift entry. 

Consider the first error in the example in Figure 1. 
The parser is in state 275 when the error is detected. 
This state has the form: 

s t ruc tType  : :=  a r r a y  [ s imp leT ypeL i s t  • ] o f  type 
s i m p l e T y p e L i s t : : =  s i m p l e T y p e L i s t ,  • s impleType  

shift to state 305 
] shift to state 304 
default declare error 

In our example, the input "1. .5" was reduced to "simple-  
T y p e "  although a full LR parser would have declared 
error because the second input " 1 "  was not a legal sym- 
bol following the "5" .  

In order to try to use the symbols " , "  and " ] "  to per- 
form a repair, we first scan ahead a bounded number  of 
tokens (five tokens in our production translator used for 
this example) to prepare for the forward moves. Each 
possible change (except, as explained subsequently, those 
that can be immediately eliminated) is tried by running 
the translator forward over this input stream until we 
either run out of lookahead tokens, encounter another 
syntax error, or perform a reduction which semantically 
indicates the presence of another error.'l" During this for- 
ward move we are running only a subset of the semantics 
of the compiler, avoiding any permanent changes to its 
data structures since the parsing is over tentative forms of 
the input. 

In addition to changes based on the input token that 
signalled the error, if the last action before the error 
detection is a shift, in which case the previous input sym- 
bol has not yet been reduced, the recovery routine backs 
up the input one token and considers the same kind of 
repairs. By limiting the backup to input tokens, we avoid 
the need to undo semantic actions. 

In choosing the best first level repair we have adopted 
the basic principles of the Graham and Rhodes method 
and assigned costs to each terminal symbol. The basic 
cost of a repair is the sum of the costs of the tokens 
involved. 

To incorporate information from the forward move, we 
multiply each basic cost by a factor to indicate lack of pro- 
gress into the forward context. If the repair allows us to 
consume all of the forward context then this factor is 
unity. Consuming less of the input gives higher multipli- 
cative factors. Thus if the basic cost of a repair prior to 
the forward move is greater than the total cost of one of 
the changes which we have already found, then the repair 
is not even potentially "bet ter" .  This observation allows 
us to eliminate many potential repairs without a forward 
move. 

If the symbol being replaced, deleted or inserted, such 
as a number  or an identifier, has a semantic attribute, 
then the repair is assigned higher cost. As in Graham 
and Rhodes'  work, the replacement of certain keywords 
by identifiers is done at a reduced cost. We also cut off 
the forward move prematurely, and assign a higher cost, 
if a reduction prompted by the change yields another 
error. 

If none of the repairs considered so far survives the 

t Thus in inserting the keyword i f  in our example, the method 
did not have enough lookahead to see the keyword then .  The 
presence of a legal expression here indicates that either an i f  or 
a whi le  is missing; the recovery method chooses the former 
without complete information. 
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forward move with sufficiently low cost, and if the state in 
which the error recovery mechanism is invoked has only 
one shift action, then the shiftable token is inserted. 
Since insertion of that token was previously considered to 
be unsatisfactory, the error recovery mechanism is usually 
invoked again after a small number  of parsing steps. The 
second time, a "un ique  token"  insertion is not con- 
s idered. t  

This aspect of  the recovery mechanism has two advan- 
tages. It suggests to the user that that token seems to be 
appropriate in the particular context,  and it allows the 
recovery mechanism to insert more than one token in 
certain cases. 

4.4. Semantic considerations 

The method includes the use of  semantic information 
in the error detection and recovery mechanism. Before a 
given reduction occurs, the parser action routines can 
check that certain semantic conditions are satisfied. For  
instance, our grammar has no typed identifiers as lexical 
tokens. Typically, an action routine for a reduction of  an 
identifier will determine its declared type and check that 
an identifier of  that type can precede the next input 
token. If the semantic conditions are not satisfied, the 
syntax error recovery takes hold. The recovery action of  
changing the semantics to satisfy the condition, for 
instance changing an identifier type, is assigned a cost and 
a forward move is attempted. The resulting recovery cost 
is then compared with the various other changes 
described in the previous section. 

As an example,  if a function identifier were followed by 
" [ " ,  the array subscript bracket,  rather than by " ( " ,  both 
a type error and a change from " [ "  to " ( "  would be con- 
sidered. 

These semantic checks are also used during the forward 
move,  thereby eliminating changes that are syntactically 
correct but are meaningless. Returning to line 7 of  Figure 
1, the fact that " a "  is an array causes the insertion of  " [ "  
rather than " ( "  even if the subscript expressions are 
more than five tokens long. 

Semantic checks can also be used in place of  grammar 
restrictions, when the language restrictions described by 
the grammar cause many programming errors from which 
it is hard to recover using local information. For  exam- 
ple, in Pascal, the declarations of labels, constants,  types 
and variables must  be in sections occurring in that order, 
each section headed by the keyword l a b e l ,  eons t ,  
or v a t  respectively. We let the grammar generate any 
number  of  these sections in any order, and impose the 
restrictions semantically. Consequently,  errors s temming 
from extra sections or sections out  of order are always 
handled properly. We also allow type declarations, rather 
than just  type identifiers, in the grammar for parameter  
lists and the results of  functions, again catching such 
errors semantically.* 

Care is needed in introducing such syntactic extensions 
to make sure that the proper restrictions are always 
imposed by the action routines. The more general syntax 
may also cause the recovery mechanism to consider 
changes which are outside the language syntax. This could 
lead to misleading diagnostics unless the extra produc- 
tions are carefully chosen and the semantic checks are 
made during the error recovery process. 

4.5. Paired errors 

One of  the problems in this sort of  error recovery is 
knowing whether a second error encountered during the 
forward move is an indication that our choice of  repair 
was poor and should be rejected, or is just  another error 
in the input stream. This problem arises on line 6 of  Fig- 
ure 1. The replacement of  the identifier go by the key- 
word g o t o  is considered here,  but is rejected because 
there is another error ( " i s "  rather than " : - - " )  within the 
forward move. The error recovery is unsure of  the 
change to g o t o  here because of  this other error and 
chooses to make a safer second level change. If  the 
second error were not present,  the error recovery would 
be more confident of  its repair of  the first error and 
would fix it successfully. 

It would be possible to take into account reductions in 
the forward move rather than just  distance into the for- 
ward context in the evaluation of  costs. With this stra- 
tegy, the change of  " g o "  to goto allows the completion 
of  a s ta tement  and partial progress into the next state- 
ment. It is thus a better repair than our current  weighting 
scheme suggests. 

4.6. Second level recovery 

If no single terminal  (first level) repair is found satis- 
factory; that is, if the cost of  each change is higher than a 
threshold value, then the error recovery retreats to a set 
of  second level changes. In this case the stack is popped 
to a state which has a shift on error  and the parser shifts 
over the error  token. The semantic actions for the error 
productions call a routine which advances the input to a 
symbol which is a legal shift in that state or a symbol 
which is one of a set of  " b e a c o n "  symbols in the 
language. This part of  the error recovery is similar to that 
of  the basic YACC. 

Second level recovery actions are reminiscent of "panic  
m o d e "  recovery but  differ in that the skipping of  subse- 
quent input is terminated either by context information 
(the shift symbols) or by context independent  "beacons" .  
Panic mode normally has only a set of "beacons".~: 

As an example,  if an error is encountered in an expres- 
sion following an i f ,  the parser will skip ahead to, but 
not past, the keyword t h e n  while "panic  m o d e "  recovery 
would most likely skip to " ; "  or the keyword end. 

t Care is needed to avoid looping in this case. It sumces to insist 
on shifting over a real input symbol for each unique input symbol 
inserted. For all other changes, the method requires that a 
recovery action result in a shift over one true input token, so no 
looping is possible. 

* Not only do such changes facilitate the error recovery, but they 
also tend to simplify the grammar. 

Earlier work by [James 72] attempted to use shift information 
for a refined panic mode, but had no meaningful strategy for 
popping the parse stack. 
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Second level recovery actions are actually very similar to 
the recovery mechanism in Wir th ' s  recursive descent 
,recovery scheme [Wi 76]. Like. Wirth, we also have a set 
of  major section keywords which are never skipped. 

In Pascal, the main program and each procedure or 
function consists of  a declaration section and a statement 
section. An important cause of  poor error recovery in 
languages of  this form is a mistaken switch from one such 
section to the other. We use the beacons to handle that 
situation. 

The second level recovery routine records in which sec- 
tion the error production which signals the input advance 
is used. If  the second level recovery occurs in the 
declaration section and the keyword fo r ,  r e p e a t ,  while, 
goto ,  or i f  is read, the keyword b e g i n  is inserted before 
the input keyword. If  the second level recovery occurs in 
the statement section and the keyword l a b e l ,  type ,  
eons t ,  or v a t  is read, the stack is popped until a state is 
reached in which that keyword is a legal shift token. In 
either case, an appropriate message is generated. 

The enumerat ion of lookaheads in states with shifts o r  
error guarantees that a second level recovery of  a major 
nonterminal  which can be derived from another major 
nonterminal  will cause another error to be detected if the 
input symbol (after the second level recovery action) can- 
not follow in the larger context. For example,  if error 
causes a second level recovery to expression default reduc- 
tions stop if a well formed expression will not complete a 
statement. If  in fact an error in an expression yields 
another,  second level, statement recovery without shifting 
any further input, then it is likely that the two errors are, 
in fact, one. We thus suppress further diagnostics after a 
second level recovery until some input is successfully 
shifted. 

4.7. The lexical analyzer and input routines 

The lexical analyzer must  handle lexical errors grace- 
fully, passing enough information on to the syntactic 
recovery mechanism so that it can decide what to do. 
The recovery mechanism needs to locate the position in 
the source program at which a token appeared so as to be 
able to print a meaningful diagnostic. Fur thermore,  the 
input routines must have the capability for suppressing 
the listing during a forward move so that the listing can 
later be produced after any error message printed for the 
current line. 

Illegal characters encountered during lexical analysis are 
passed to the syntax analyzer, except that a sequence of  
occurrences of  the same illegal character is replaced by a 
single such character, The iexical analyzer generates no 
error message, since the syntax analyzer will do so. The 
normal error recovery mechanism is then used, allowing 
possible replacement or deletion of  the illegal character as 
appropriate. 

Our lexical analyzer recognizes forms of  the language 
syntax used at other installations and in other character 
sets. It also knows that string and comment  delimiters 
must be paired and that several different characters may 
be used to delimit strings and character constants: nor- 
mally, # for portability to other systems, and " and 
incorrectly. 

Buffering input during a read ahead to gather context 
for forward moves is a nuisance but a necessity. Random 
access file i /o  allowing only pointers to skipped lines to be 
saved makes listing suppression simple. If  such access is 
not available, the text of lines can be spooled in core or 
to the disk. 

4.8. Error messages. 

The format of  error messages produced by recovery 
systems has received too little attention. It is important 
that each error point be clearly marked, and very impor- 
tant that the messages produced be concise. Our method 
produces a single short  message for each error. These 
messages are not wordy; they state simply the recovery 
action taken, and the symbol involved. It is important 
that users do not have to read through several lines of 
diagnostics to get the essential information being 
presented by the recovery method. This is especially true 
since most users of  our system receive error messages at 
a time sharing terminal with a small (24 line) screen. 

In many compilers, errors in declaring or defining an 
identifier in a program cause a plethora of  diagnostic mes- 
sages about identifier use, many of  which stem from the 
same error and some of  which may be misleading. We 
attempt to alleviate this problem in two ways. 

When a misuse of  an identifier such as inconsistent 
type or lack of  declaration is detected by the semantic 
routines, a message is printed and the error and line 
number  are recorded internally. Each time the same 
problem recurs, the line number  of  its occurrence is also 
recorded, but no additional i n t e r - l i n e  message is gen- 
erated. At the end of  the program, procedure, or func- 
tion, these errors are summarized.  

If the second level recovery mechanism advances over 
an identifier, all subsequent  warnings about identifiers, 
such as lack of  initialization or lack of  use, are 
suppressed.'t" 

5. Cost of  the implementation 

5.1. Size of  the implementation 

Our grammar for Pascal consists of  184 rules, 16 of  
which are error productions. There are 69 terminals and 
61 nonterminals.  The resulting parser has 337 states of 
which 24 are states with shifts on error. The parse tables 
occupy 6000 bytes on a PpP-11 .  Of the 1700 entries in 
the parse action table, only 214 are lookaheads in states 
which have shifts on error, and some of  these lookaheads 
would be present even if the error productions were not. 

The total cost in space of  the expansion of lookaheads 
in shifts on the e r r o r  token is less that ten percent of  
the total table size. The version of  YACC we worked 
with used a list representation of  the LR parse tables. A 
newer version of  YACC uses a matrix representation, and 
with this improved representation the increase is less than 
five percent. 

t It would suffice to suppress warnings for the skipped identifiers 
only. 
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The recovery code itself requires little data beyond the 
basic parse tables. The additional fixed data required is 
the information as to symbol costs, which in any case is 
no more than a few hundred bytes, and the small tables 
which guide the second level recovery. The total size of 
our syntax analysis and recovery routines, for a full Pascal 
translator with a number of bells and whistles, is 17.5K 
bytes on a PDP-11 .  This breaks down roughly as fol- 
lows: 

Lexical analyzer 650 bytes 9% 
Parser 800 bytes 5% 
Input-Output 1700 bytes 10% 
Error recovery 4800 bytes 27% 
Parse tables 6000 bytes 34% 
Action hooks 2500 bytes 15% 

The input/output is an interface which provides spooling 
of input during the forward move, including file switching 
due to the placement of source code in multiple, possibly 
nested files. The action hooks are the semantic routine 
calls embedded in the grammar itself. 

Without any error recovery, roughly 10K bytes of pro- 
gram and data would remain. In our environment, most 
of the additional size of the compiler is shared among 
users when multiple translations are taking place simul- 
taneously, and it is thus less significant. The total size of 
the translator is roughly 70K bytes with 55K program 
shared among all users and 15K bytes unshared. 

The method uses no additional space dynamically, and 
does not require copying of the parse stack. The forward 
move parser knows how to run on a "split-stack" so as to 
avoid the extra time and space involved in copying the 
stack. 

5,2. Speed of  the implementation 

The translation time of programs without errors is not 
degraded by the method if a matrix form of the parse 
tables is used. In our list form we at first experienced a 
15% reduction in speed due to the enumeration of looka- 
heads, and the subsequent slower linear searches of the 
list form parse tables in the expression chain. This 15% 
was recovered by more careful coding of the search loop 
in the parser. 

The execution time of the error recovery itself is 
acceptably small. On one of the example programs from 
Rhodes' dissertation [Rhodes 73], a program of around 
100 lines with almost 100 errors, the method used 
approximately 3 seconds of user processor time. A pro- 
gram of equivalent length with no errors would be pro- 
cessed in approximately 1 second of processor time. 
Since the error messages generated by the compiler are 
kept on secondary storage and must be retrieved to print 
each error message, a large percentage of this additional 
time was used just to retrieve the 100 or more error mes- 
sages printed by the translator. The efficiency of the error 
recovery method has never proved to be a problem on 
our small systems running 20 to 30 simultaneous Pascal 
u s e r s .  

6. Performance of  the method 

6.1. Quality of  the recovery 

We have gathered a large number of student programs 
over the course of an earlier quarter of instruction. The 
programs suggest that the method does indeed do a good 
job of correcting a large portion of programmer mistakes. 
The kind of errors which it does not repair often involve 
a deeper misunderstanding of the language than could be 
repaired by any known method with efficiency acceptable 
in our environment. 

The error recovery also tends not to flurry, rarely pro- 
ducing a large number of diagnostics for a single syntax 
error. The reasons are a combination of the context 
checks for first-level repairs, the cost criteria, the sum- 
marized information, and the suppression of consecutive 
second level diagnostics. 

6.2. A sample data set 

We have obtained from Ripley and Druseikis [RD 78] a 
database of errors from erroneous student Pascal pro- 
grams. There are 126 fragmentary programs in the sam- 
ple set, and each program fragment represents a 
"unique" error in the original sample (which was much 
larger). The constitution of the larger sample is indicated 
by a weight for each fragment reflecting the frequency of 
its occurrence in the sample as a whole. 

The samples were prepared for systems which do only 
syntactic analysis. The errors which the samples are 
intended to test are indicated, but declarations for 
identifiers used in the fragments are almost always omit- 
ted. Before running the samples we added declarations 
for the variables. This change allows our method to use 
semantic information which was present in the original 
programs, and treats the kinds of errors which were 
present there. 

6.3. Evaluation of  our method 

We have made a preliminary evaluation of the perfor- 
mance of our algorithm on this data set using the criteria 
of the original paper [RD 78]. The paper classified error 
messages from the 6000-3.4 Pascal system as being either 
"accurate", "incorrect" or "poor".  Messages were 
deemed to be poor if they were "vague, giving no indica- 
tion of what was expected"[RD 78]. 

Our translator accurately diagnosed well over 80 percent 
of the errors in the weighted sample set, while Pascal 
6000--3.4 accurately diagnosed roughly 50 percent of the 
errors. Many of the errors for which we give accurate 
repairs and Pascal 6000-3.4 does not involve " ; "  errors 
and incorrect keywords. The keyword errors include 
misspellings, omissions, and extra keywords. We also 
diagnose extra or out-of-order declaration or definition 
sections properly whereas the 6000-3.4 compiler does not. 

Every example on which we rated our recovery as poor 
was rated poor by Ripley and Druseikis with one excep- 
tion. In that example, the program contained 
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if y[n; = y[m] then . 

Ripley and Druseikis rated the Pascal 6000-3.4 perfor- 
mance accurate because the message " ' ] '  expected " was 
generated. However since the next three messages at the 
same point in the program were "illegal type of expres- 
sion", " t hen  expected", and "illegal symbol", we regard 
the diagnosis in this example as poor. 

The same sample data set has been used by Penneilo 
and DeRemer [PDeR 78] in evaluating their LR recovery 
algorithm and by Pai and Kieburtz [PK 79] in assessing 
their LL(1) strategy. However, they have used different 
evaluation criteria. We are in the process of evaluating 
our results using their criteria; the performance of our 
system again appears t obe  very good. 

7. Conclusions and suggestions for further work 

We have described an LR error recovery system 
embedded in a heavily used translator which provides 
high quality recovery with reasonable cost in space and 
time. The underlying mechanism is readily incorporated 
in parser constructors and the additional information is 
easily supplied by the implementer. If space is even more 
limited, there are natural places to prune the system. 
(For example, one could restrict the forward move to the 
number of tokens on the input line, provided there were 
at least one, and provided the cost formula were adjusted 
appropriately.) 

The approach here is fundamentally limited. The limi- 
tation to single terminal repairs, which has made the 
method so efficient, may be difficult to remove without 
using much more space and time. This method does, 
however, provide a benchmark for more ambitious 
schemes. A method which proposes to use much more 
t ime than ours must provide substantially better error 
recovery to justify its cost. 

There is much hope for automation of this method. 
Work is in progress to put this method in place within 
YACC so that it can easily be used. We are planning to 
continue work on error recovery, and are especially 
encouraged by the use of semantic information in this 
method. We intend to give more and careful study to the 
use of semantics in error recovery. 
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